detr_transformer.py 13 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from ppdet.core.workspace import register
from ..layers import MultiHeadAttention, _convert_attention_mask
from .position_encoding import PositionEmbedding
from .utils import _get_clones
from ..initializer import linear_init_, conv_init_, xavier_uniform_, normal_

__all__ = ['DETRTransformer']


class TransformerEncoderLayer(nn.Layer):
    def __init__(self,
                 d_model,
                 nhead,
                 dim_feedforward=2048,
                 dropout=0.1,
                 activation="relu",
                 attn_dropout=None,
                 act_dropout=None,
                 normalize_before=False):
        super(TransformerEncoderLayer, self).__init__()
        attn_dropout = dropout if attn_dropout is None else attn_dropout
        act_dropout = dropout if act_dropout is None else act_dropout
        self.normalize_before = normalize_before

        self.self_attn = MultiHeadAttention(d_model, nhead, attn_dropout)
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(act_dropout, mode="upscale_in_train")
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout, mode="upscale_in_train")
        self.dropout2 = nn.Dropout(dropout, mode="upscale_in_train")
        self.activation = getattr(F, activation)
        self._reset_parameters()

    def _reset_parameters(self):
        linear_init_(self.linear1)
        linear_init_(self.linear2)

    @staticmethod
    def with_pos_embed(tensor, pos_embed):
        return tensor if pos_embed is None else tensor + pos_embed

    def forward(self, src, src_mask=None, pos_embed=None):
        residual = src
        if self.normalize_before:
            src = self.norm1(src)
        q = k = self.with_pos_embed(src, pos_embed)
        src = self.self_attn(q, k, value=src, attn_mask=src_mask)

        src = residual + self.dropout1(src)
        if not self.normalize_before:
            src = self.norm1(src)

        residual = src
        if self.normalize_before:
            src = self.norm2(src)
        src = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = residual + self.dropout2(src)
        if not self.normalize_before:
            src = self.norm2(src)
        return src


class TransformerEncoder(nn.Layer):
    def __init__(self, encoder_layer, num_layers, norm=None):
        super(TransformerEncoder, self).__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm

    def forward(self, src, src_mask=None, pos_embed=None):
        output = src
        for layer in self.layers:
            output = layer(output, src_mask=src_mask, pos_embed=pos_embed)

        if self.norm is not None:
            output = self.norm(output)

        return output


class TransformerDecoderLayer(nn.Layer):
    def __init__(self,
                 d_model,
                 nhead,
                 dim_feedforward=2048,
                 dropout=0.1,
                 activation="relu",
                 attn_dropout=None,
                 act_dropout=None,
                 normalize_before=False):
        super(TransformerDecoderLayer, self).__init__()
        attn_dropout = dropout if attn_dropout is None else attn_dropout
        act_dropout = dropout if act_dropout is None else act_dropout
        self.normalize_before = normalize_before

        self.self_attn = MultiHeadAttention(d_model, nhead, attn_dropout)
        self.cross_attn = MultiHeadAttention(d_model, nhead, attn_dropout)
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(act_dropout, mode="upscale_in_train")
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout, mode="upscale_in_train")
        self.dropout2 = nn.Dropout(dropout, mode="upscale_in_train")
        self.dropout3 = nn.Dropout(dropout, mode="upscale_in_train")
        self.activation = getattr(F, activation)
        self._reset_parameters()

    def _reset_parameters(self):
        linear_init_(self.linear1)
        linear_init_(self.linear2)

    @staticmethod
    def with_pos_embed(tensor, pos_embed):
        return tensor if pos_embed is None else tensor + pos_embed

    def forward(self,
                tgt,
                memory,
                tgt_mask=None,
                memory_mask=None,
                pos_embed=None,
                query_pos_embed=None):
        tgt_mask = _convert_attention_mask(tgt_mask, tgt.dtype)

        residual = tgt
        if self.normalize_before:
            tgt = self.norm1(tgt)
        q = k = self.with_pos_embed(tgt, query_pos_embed)
        tgt = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask)
        tgt = residual + self.dropout1(tgt)
        if not self.normalize_before:
            tgt = self.norm1(tgt)

        residual = tgt
        if self.normalize_before:
            tgt = self.norm2(tgt)
        q = self.with_pos_embed(tgt, query_pos_embed)
        k = self.with_pos_embed(memory, pos_embed)
        tgt = self.cross_attn(q, k, value=memory, attn_mask=memory_mask)
        tgt = residual + self.dropout2(tgt)
        if not self.normalize_before:
            tgt = self.norm2(tgt)

        residual = tgt
        if self.normalize_before:
            tgt = self.norm3(tgt)
        tgt = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        tgt = residual + self.dropout3(tgt)
        if not self.normalize_before:
            tgt = self.norm3(tgt)
        return tgt


class TransformerDecoder(nn.Layer):
    def __init__(self,
                 decoder_layer,
                 num_layers,
                 norm=None,
                 return_intermediate=False):
        super(TransformerDecoder, self).__init__()
        self.layers = _get_clones(decoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm
        self.return_intermediate = return_intermediate

    def forward(self,
                tgt,
                memory,
                tgt_mask=None,
                memory_mask=None,
                pos_embed=None,
                query_pos_embed=None):
        tgt_mask = _convert_attention_mask(tgt_mask, tgt.dtype)

        output = tgt
        intermediate = []
        for layer in self.layers:
            output = layer(
                output,
                memory,
                tgt_mask=tgt_mask,
                memory_mask=memory_mask,
                pos_embed=pos_embed,
                query_pos_embed=query_pos_embed)
            if self.return_intermediate:
                intermediate.append(self.norm(output))

        if self.norm is not None:
            output = self.norm(output)

        if self.return_intermediate:
            return paddle.stack(intermediate)

        return output.unsqueeze(0)


@register
class DETRTransformer(nn.Layer):
    __shared__ = ['hidden_dim']

    def __init__(self,
                 num_queries=100,
                 position_embed_type='sine',
                 return_intermediate_dec=True,
                 backbone_num_channels=2048,
                 hidden_dim=256,
                 nhead=8,
                 num_encoder_layers=6,
                 num_decoder_layers=6,
                 dim_feedforward=2048,
                 dropout=0.1,
                 activation="relu",
                 pe_temperature=10000,
                 pe_offset=0.,
                 attn_dropout=None,
                 act_dropout=None,
                 normalize_before=False):
        super(DETRTransformer, self).__init__()
        assert position_embed_type in ['sine', 'learned'],\
            f'ValueError: position_embed_type not supported {position_embed_type}!'
        self.hidden_dim = hidden_dim
        self.nhead = nhead

        encoder_layer = TransformerEncoderLayer(
            hidden_dim, nhead, dim_feedforward, dropout, activation,
            attn_dropout, act_dropout, normalize_before)
        encoder_norm = nn.LayerNorm(hidden_dim) if normalize_before else None
        self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers,
                                          encoder_norm)

        decoder_layer = TransformerDecoderLayer(
            hidden_dim, nhead, dim_feedforward, dropout, activation,
            attn_dropout, act_dropout, normalize_before)
        decoder_norm = nn.LayerNorm(hidden_dim)
        self.decoder = TransformerDecoder(
            decoder_layer,
            num_decoder_layers,
            decoder_norm,
            return_intermediate=return_intermediate_dec)

        self.input_proj = nn.Conv2D(
            backbone_num_channels, hidden_dim, kernel_size=1)
        self.query_pos_embed = nn.Embedding(num_queries, hidden_dim)
        self.position_embedding = PositionEmbedding(
            hidden_dim // 2,
            temperature=pe_temperature,
            normalize=True if position_embed_type == 'sine' else False,
            embed_type=position_embed_type,
            offset=pe_offset)

        self._reset_parameters()

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                xavier_uniform_(p)
        conv_init_(self.input_proj)
        normal_(self.query_pos_embed.weight)

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {
            'backbone_num_channels': [i.channels for i in input_shape][-1],
        }

    def _convert_attention_mask(self, mask):
        return (mask - 1.0) * 1e9

    def forward(self, src, src_mask=None, *args, **kwargs):
        r"""
        Applies a Transformer model on the inputs.

        Parameters:
            src (List(Tensor)): Backbone feature maps with shape [[bs, c, h, w]].
            src_mask (Tensor, optional): A tensor used in multi-head attention
                to prevents attention to some unwanted positions, usually the
                paddings or the subsequent positions. It is a tensor with shape
                [bs, H, W]`. When the data type is bool, the unwanted positions
                have `False` values and the others have `True` values. When the
                data type is int, the unwanted positions have 0 values and the
                others have 1 values. When the data type is float, the unwanted
                positions have `-INF` values and the others have 0 values. It
                can be None when nothing wanted or needed to be prevented
                attention to. Default None.

        Returns:
            output (Tensor): [num_levels, batch_size, num_queries, hidden_dim]
            memory (Tensor): [batch_size, hidden_dim, h, w]
        """
        # use last level feature map
        src_proj = self.input_proj(src[-1])
        bs, c, h, w = paddle.shape(src_proj)
        # flatten [B, C, H, W] to [B, HxW, C]
        src_flatten = src_proj.flatten(2).transpose([0, 2, 1])
        if src_mask is not None:
            src_mask = F.interpolate(src_mask.unsqueeze(0), size=(h, w))[0]
        else:
            src_mask = paddle.ones([bs, h, w])
        pos_embed = self.position_embedding(src_mask).flatten(1, 2)

        if self.training:
            src_mask = self._convert_attention_mask(src_mask)
            src_mask = src_mask.reshape([bs, 1, 1, h * w])
        else:
            src_mask = None

        memory = self.encoder(
            src_flatten, src_mask=src_mask, pos_embed=pos_embed)

        query_pos_embed = self.query_pos_embed.weight.unsqueeze(0).tile(
            [bs, 1, 1])
        tgt = paddle.zeros_like(query_pos_embed)
        output = self.decoder(
            tgt,
            memory,
            memory_mask=src_mask,
            pos_embed=pos_embed,
            query_pos_embed=query_pos_embed)

        if self.training:
            src_mask = src_mask.reshape([bs, 1, 1, h, w])
        else:
            src_mask = None

        return (output, memory.transpose([0, 2, 1]).reshape([bs, c, h, w]),
                src_proj, src_mask)