test_yolov3_loss.py 14.2 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import unittest

import paddle
import paddle.nn.functional as F
# add python path of PadleDetection to sys.path
import os
import sys
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 4)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

from ppdet.modeling.losses import YOLOv3Loss
from ppdet.data.transform.op_helper import jaccard_overlap
from ppdet.modeling.bbox_utils import iou_similarity
import numpy as np
np.random.seed(0)


def _split_output(output, an_num, num_classes):
    """
    Split output feature map to x, y, w, h, objectness, classification
    along channel dimension
    """
    x = paddle.strided_slice(
        output,
        axes=[1],
        starts=[0],
        ends=[output.shape[1]],
        strides=[5 + num_classes])
    y = paddle.strided_slice(
        output,
        axes=[1],
        starts=[1],
        ends=[output.shape[1]],
        strides=[5 + num_classes])
    w = paddle.strided_slice(
        output,
        axes=[1],
        starts=[2],
        ends=[output.shape[1]],
        strides=[5 + num_classes])
    h = paddle.strided_slice(
        output,
        axes=[1],
        starts=[3],
        ends=[output.shape[1]],
        strides=[5 + num_classes])
    obj = paddle.strided_slice(
        output,
        axes=[1],
        starts=[4],
        ends=[output.shape[1]],
        strides=[5 + num_classes])
    clss = []
    stride = output.shape[1] // an_num
    for m in range(an_num):
        clss.append(
            paddle.slice(
                output,
                axes=[1],
                starts=[stride * m + 5],
                ends=[stride * m + 5 + num_classes]))
    cls = paddle.transpose(paddle.stack(clss, axis=1), perm=[0, 1, 3, 4, 2])
    return (x, y, w, h, obj, cls)


def _split_target(target):
    """
    split target to x, y, w, h, objectness, classification
    along dimension 2
    target is in shape [N, an_num, 6 + class_num, H, W]
    """
    tx = target[:, :, 0, :, :]
    ty = target[:, :, 1, :, :]
    tw = target[:, :, 2, :, :]
    th = target[:, :, 3, :, :]
    tscale = target[:, :, 4, :, :]
    tobj = target[:, :, 5, :, :]
    tcls = paddle.transpose(target[:, :, 6:, :, :], perm=[0, 1, 3, 4, 2])
    tcls.stop_gradient = True
    return (tx, ty, tw, th, tscale, tobj, tcls)


def _calc_obj_loss(output, obj, tobj, gt_box, batch_size, anchors, num_classes,
                   downsample, ignore_thresh, scale_x_y):
    # A prediction bbox overlap any gt_bbox over ignore_thresh, 
    # objectness loss will be ignored, process as follows:
    # 1. get pred bbox, which is same with YOLOv3 infer mode, use yolo_box here
    # NOTE: img_size is set as 1.0 to get noramlized pred bbox
    bbox, prob = paddle.vision.ops.yolo_box(
        x=output,
        img_size=paddle.ones(
            shape=[batch_size, 2], dtype="int32"),
        anchors=anchors,
        class_num=num_classes,
        conf_thresh=0.,
        downsample_ratio=downsample,
        clip_bbox=False,
        scale_x_y=scale_x_y)
    # 2. split pred bbox and gt bbox by sample, calculate IoU between pred bbox
    #    and gt bbox in each sample
    if batch_size > 1:
        preds = paddle.split(bbox, batch_size, axis=0)
        gts = paddle.split(gt_box, batch_size, axis=0)
    else:
        preds = [bbox]
        gts = [gt_box]
        probs = [prob]
    ious = []
    for pred, gt in zip(preds, gts):

        def box_xywh2xyxy(box):
            x = box[:, 0]
            y = box[:, 1]
            w = box[:, 2]
            h = box[:, 3]
            return paddle.stack(
                [
                    x - w / 2.,
                    y - h / 2.,
                    x + w / 2.,
                    y + h / 2.,
                ], axis=1)

        pred = paddle.squeeze(pred, axis=[0])
        gt = box_xywh2xyxy(paddle.squeeze(gt, axis=[0]))
        ious.append(iou_similarity(pred, gt))
    iou = paddle.stack(ious, axis=0)
    # 3. Get iou_mask by IoU between gt bbox and prediction bbox,
    #    Get obj_mask by tobj(holds gt_score), calculate objectness loss
    max_iou = paddle.max(iou, axis=-1)
    iou_mask = paddle.cast(max_iou <= ignore_thresh, dtype="float32")
    output_shape = paddle.shape(output)
    an_num = len(anchors) // 2
    iou_mask = paddle.reshape(iou_mask, (-1, an_num, output_shape[2],
                                         output_shape[3]))
    iou_mask.stop_gradient = True
    # NOTE: tobj holds gt_score, obj_mask holds object existence mask
    obj_mask = paddle.cast(tobj > 0., dtype="float32")
    obj_mask.stop_gradient = True
    # For positive objectness grids, objectness loss should be calculated
    # For negative objectness grids, objectness loss is calculated only iou_mask == 1.0
    obj_sigmoid = F.sigmoid(obj)
    loss_obj = F.binary_cross_entropy(obj_sigmoid, obj_mask, reduction='none')
    loss_obj_pos = paddle.sum(loss_obj * tobj, axis=[1, 2, 3])
    loss_obj_neg = paddle.sum(loss_obj * (1.0 - obj_mask) * iou_mask,
                              axis=[1, 2, 3])
    return loss_obj_pos, loss_obj_neg


def fine_grained_loss(output,
                      target,
                      gt_box,
                      batch_size,
                      num_classes,
                      anchors,
                      ignore_thresh,
                      downsample,
                      scale_x_y=1.,
                      eps=1e-10):
    an_num = len(anchors) // 2
    x, y, w, h, obj, cls = _split_output(output, an_num, num_classes)
    tx, ty, tw, th, tscale, tobj, tcls = _split_target(target)

    tscale_tobj = tscale * tobj

    scale_x_y = scale_x_y

    if (abs(scale_x_y - 1.0) < eps):
        x = F.sigmoid(x)
        y = F.sigmoid(y)
        loss_x = F.binary_cross_entropy(x, tx, reduction='none') * tscale_tobj
        loss_x = paddle.sum(loss_x, axis=[1, 2, 3])
        loss_y = F.binary_cross_entropy(y, ty, reduction='none') * tscale_tobj
        loss_y = paddle.sum(loss_y, axis=[1, 2, 3])
    else:
        dx = scale_x_y * F.sigmoid(x) - 0.5 * (scale_x_y - 1.0)
        dy = scale_x_y * F.sigmoid(y) - 0.5 * (scale_x_y - 1.0)
        loss_x = paddle.abs(dx - tx) * tscale_tobj
        loss_x = paddle.sum(loss_x, axis=[1, 2, 3])
        loss_y = paddle.abs(dy - ty) * tscale_tobj
        loss_y = paddle.sum(loss_y, axis=[1, 2, 3])

    # NOTE: we refined loss function of (w, h) as L1Loss
    loss_w = paddle.abs(w - tw) * tscale_tobj
    loss_w = paddle.sum(loss_w, axis=[1, 2, 3])
    loss_h = paddle.abs(h - th) * tscale_tobj
    loss_h = paddle.sum(loss_h, axis=[1, 2, 3])

    loss_obj_pos, loss_obj_neg = _calc_obj_loss(
        output, obj, tobj, gt_box, batch_size, anchors, num_classes, downsample,
        ignore_thresh, scale_x_y)

    cls = F.sigmoid(cls)
    loss_cls = F.binary_cross_entropy(cls, tcls, reduction='none')
    tobj = paddle.unsqueeze(tobj, axis=-1)

    loss_cls = paddle.multiply(loss_cls, tobj)
    loss_cls = paddle.sum(loss_cls, axis=[1, 2, 3, 4])

    loss_xys = paddle.mean(loss_x + loss_y)
    loss_whs = paddle.mean(loss_w + loss_h)
    loss_objs = paddle.mean(loss_obj_pos + loss_obj_neg)
    loss_clss = paddle.mean(loss_cls)

    losses_all = {
        "loss_xy": paddle.sum(loss_xys),
        "loss_wh": paddle.sum(loss_whs),
        "loss_loc": paddle.sum(loss_xys) + paddle.sum(loss_whs),
        "loss_obj": paddle.sum(loss_objs),
        "loss_cls": paddle.sum(loss_clss),
    }
    return losses_all, x, y, tx, ty


def gt2yolotarget(gt_bbox, gt_class, gt_score, anchors, mask, num_classes, size,
                  stride):
    grid_h, grid_w = size
    h, w = grid_h * stride, grid_w * stride
    an_hw = np.array(anchors) / np.array([[w, h]])
    target = np.zeros(
        (len(mask), 6 + num_classes, grid_h, grid_w), dtype=np.float32)
    for b in range(gt_bbox.shape[0]):
        gx, gy, gw, gh = gt_bbox[b, :]
        cls = gt_class[b]
        score = gt_score[b]
        if gw <= 0. or gh <= 0. or score <= 0.:
            continue

        # find best match anchor index
        best_iou = 0.
        best_idx = -1
        for an_idx in range(an_hw.shape[0]):
            iou = jaccard_overlap([0., 0., gw, gh],
                                  [0., 0., an_hw[an_idx, 0], an_hw[an_idx, 1]])
            if iou > best_iou:
                best_iou = iou
                best_idx = an_idx

        gi = int(gx * grid_w)
        gj = int(gy * grid_h)

        # gtbox should be regresed in this layes if best match 
        # anchor index in anchor mask of this layer
        if best_idx in mask:
            best_n = mask.index(best_idx)

            # x, y, w, h, scale
            target[best_n, 0, gj, gi] = gx * grid_w - gi
            target[best_n, 1, gj, gi] = gy * grid_h - gj
            target[best_n, 2, gj, gi] = np.log(gw * w / anchors[best_idx][0])
            target[best_n, 3, gj, gi] = np.log(gh * h / anchors[best_idx][1])
            target[best_n, 4, gj, gi] = 2.0 - gw * gh

            # objectness record gt_score
            # if target[best_n, 5, gj, gi] > 0:
            #     print('find 1 duplicate')
            target[best_n, 5, gj, gi] = score

            # classification
            target[best_n, 6 + cls, gj, gi] = 1.

    return target


class TestYolov3LossOp(unittest.TestCase):
    def setUp(self):
        self.initTestCase()
        x = np.random.uniform(0, 1, self.x_shape).astype('float64')
        gtbox = np.random.random(size=self.gtbox_shape).astype('float64')
        gtlabel = np.random.randint(0, self.class_num, self.gtbox_shape[:2])
        gtmask = np.random.randint(0, 2, self.gtbox_shape[:2])
        gtbox = gtbox * gtmask[:, :, np.newaxis]
        gtlabel = gtlabel * gtmask

        gtscore = np.ones(self.gtbox_shape[:2]).astype('float64')
        if self.gtscore:
            gtscore = np.random.random(self.gtbox_shape[:2]).astype('float64')

        target = []
        for box, label, score in zip(gtbox, gtlabel, gtscore):
            target.append(
                gt2yolotarget(box, label, score, self.anchors, self.anchor_mask,
                              self.class_num, (self.h, self.w
                                               ), self.downsample_ratio))

        self.target = np.array(target).astype('float64')

        self.mask_anchors = []
        for i in self.anchor_mask:
            self.mask_anchors.extend(self.anchors[i])
        self.x = x
        self.gtbox = gtbox
        self.gtlabel = gtlabel
        self.gtscore = gtscore

    def initTestCase(self):
        self.b = 8
        self.h = 19
        self.w = 19
        self.anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
                        [59, 119], [116, 90], [156, 198], [373, 326]]
        self.anchor_mask = [6, 7, 8]
        self.na = len(self.anchor_mask)
        self.class_num = 80
        self.ignore_thresh = 0.7
        self.downsample_ratio = 32
        self.x_shape = (self.b, len(self.anchor_mask) * (5 + self.class_num),
                        self.h, self.w)
        self.gtbox_shape = (self.b, 40, 4)
        self.gtscore = True
        self.use_label_smooth = False
        self.scale_x_y = 1.

    def test_loss(self):
        x, gtbox, gtlabel, gtscore, target = self.x, self.gtbox, self.gtlabel, self.gtscore, self.target
        yolo_loss = YOLOv3Loss(
            ignore_thresh=self.ignore_thresh,
            label_smooth=self.use_label_smooth,
            num_classes=self.class_num,
            downsample=self.downsample_ratio,
            scale_x_y=self.scale_x_y)
        x = paddle.to_tensor(x.astype(np.float32))
        gtbox = paddle.to_tensor(gtbox.astype(np.float32))
        gtlabel = paddle.to_tensor(gtlabel.astype(np.float32))
        gtscore = paddle.to_tensor(gtscore.astype(np.float32))
        t = paddle.to_tensor(target.astype(np.float32))
        anchor = [self.anchors[i] for i in self.anchor_mask]
        (yolo_loss1, px, py, tx, ty) = fine_grained_loss(
            output=x,
            target=t,
            gt_box=gtbox,
            batch_size=self.b,
            num_classes=self.class_num,
            anchors=self.mask_anchors,
            ignore_thresh=self.ignore_thresh,
            downsample=self.downsample_ratio,
            scale_x_y=self.scale_x_y)
        yolo_loss2 = yolo_loss.yolov3_loss(
            x, t, gtbox, anchor, self.downsample_ratio, self.scale_x_y)
        for k in yolo_loss2:
            self.assertAlmostEqual(
                float(yolo_loss1[k]), float(yolo_loss2[k]), delta=1e-2, msg=k)


class TestYolov3LossNoGTScore(TestYolov3LossOp):
    def initTestCase(self):
        self.b = 1
        self.h = 76
        self.w = 76
        self.anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
                        [59, 119], [116, 90], [156, 198], [373, 326]]
        self.anchor_mask = [0, 1, 2]
        self.na = len(self.anchor_mask)
        self.class_num = 80
        self.ignore_thresh = 0.7
        self.downsample_ratio = 8
        self.x_shape = (self.b, len(self.anchor_mask) * (5 + self.class_num),
                        self.h, self.w)
        self.gtbox_shape = (self.b, 40, 4)
        self.gtscore = False
        self.use_label_smooth = False
        self.scale_x_y = 1.


class TestYolov3LossWithScaleXY(TestYolov3LossOp):
    def initTestCase(self):
        self.b = 5
        self.h = 38
        self.w = 38
        self.anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
                        [59, 119], [116, 90], [156, 198], [373, 326]]
        self.anchor_mask = [3, 4, 5]
        self.na = len(self.anchor_mask)
        self.class_num = 80
        self.ignore_thresh = 0.7
        self.downsample_ratio = 16
        self.x_shape = (self.b, len(self.anchor_mask) * (5 + self.class_num),
                        self.h, self.w)
        self.gtbox_shape = (self.b, 40, 4)
        self.gtscore = True
        self.use_label_smooth = False
        self.scale_x_y = 1.2


if __name__ == "__main__":
    unittest.main()