losses.py 8.5 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from ppdet.core.workspace import register
from ppdet.modeling.losses.iou_loss import GIoULoss
from .utils import QFLv2

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = [
    'SSODFCOSLoss',
    'SSODPPYOLOELoss',
]


@register
class SSODFCOSLoss(nn.Layer):
    def __init__(self, loss_weight=1.0):
        super(SSODFCOSLoss, self).__init__()
        self.loss_weight = loss_weight

    def forward(self, student_head_outs, teacher_head_outs, train_cfg):
        # for semi-det distill
        student_logits, student_deltas, student_quality = student_head_outs
        teacher_logits, teacher_deltas, teacher_quality = teacher_head_outs
        nc = student_logits[0].shape[1]

        student_logits = paddle.concat(
            [
                _.transpose([0, 2, 3, 1]).reshape([-1, nc])
                for _ in student_logits
            ],
            axis=0)
        teacher_logits = paddle.concat(
            [
                _.transpose([0, 2, 3, 1]).reshape([-1, nc])
                for _ in teacher_logits
            ],
            axis=0)

        student_deltas = paddle.concat(
            [
                _.transpose([0, 2, 3, 1]).reshape([-1, 4])
                for _ in student_deltas
            ],
            axis=0)
        teacher_deltas = paddle.concat(
            [
                _.transpose([0, 2, 3, 1]).reshape([-1, 4])
                for _ in teacher_deltas
            ],
            axis=0)

        student_quality = paddle.concat(
            [
                _.transpose([0, 2, 3, 1]).reshape([-1, 1])
                for _ in student_quality
            ],
            axis=0)
        teacher_quality = paddle.concat(
            [
                _.transpose([0, 2, 3, 1]).reshape([-1, 1])
                for _ in teacher_quality
            ],
            axis=0)

        ratio = train_cfg.get('ratio', 0.01)
        with paddle.no_grad():
            # Region Selection
            count_num = int(teacher_logits.shape[0] * ratio)
            teacher_probs = F.sigmoid(teacher_logits)
            max_vals = paddle.max(teacher_probs, 1)
            sorted_vals, sorted_inds = paddle.topk(max_vals,
                                                   teacher_logits.shape[0])
            mask = paddle.zeros_like(max_vals)
            mask[sorted_inds[:count_num]] = 1.
            fg_num = sorted_vals[:count_num].sum()
            b_mask = mask > 0

        # distill_loss_cls
        loss_logits = QFLv2(
            F.sigmoid(student_logits),
            teacher_probs,
            weight=mask,
            reduction="sum") / fg_num

        # distill_loss_box
        inputs = paddle.concat(
            (-student_deltas[b_mask][..., :2], student_deltas[b_mask][..., 2:]),
            axis=-1)
        targets = paddle.concat(
            (-teacher_deltas[b_mask][..., :2], teacher_deltas[b_mask][..., 2:]),
            axis=-1)
        iou_loss = GIoULoss(reduction='mean')
        loss_deltas = iou_loss(inputs, targets)

        # distill_loss_quality
        loss_quality = F.binary_cross_entropy(
            F.sigmoid(student_quality[b_mask]),
            F.sigmoid(teacher_quality[b_mask]),
            reduction='mean')

        return {
            "distill_loss_cls": loss_logits,
            "distill_loss_box": loss_deltas,
            "distill_loss_quality": loss_quality,
            "fg_sum": fg_num,
        }


@register
class SSODPPYOLOELoss(nn.Layer):
    def __init__(self, loss_weight=1.0):
        super(SSODPPYOLOELoss, self).__init__()
        self.loss_weight = loss_weight

    def forward(self, student_head_outs, teacher_head_outs, train_cfg):
        # for semi-det distill
        # student_probs: already sigmoid
        student_probs, student_deltas, student_dfl = student_head_outs
        teacher_probs, teacher_deltas, teacher_dfl = teacher_head_outs
        bs, l, nc = student_probs.shape[:]  # bs, l, num_classes
        bs, l, _, reg_ch = student_dfl.shape[:]  # bs, l, 4, reg_ch
        student_probs = student_probs.reshape([-1, nc])
        teacher_probs = teacher_probs.reshape([-1, nc])
        student_deltas = student_deltas.reshape([-1, 4])
        teacher_deltas = teacher_deltas.reshape([-1, 4])
        student_dfl = student_dfl.reshape([-1, 4, reg_ch])
        teacher_dfl = teacher_dfl.reshape([-1, 4, reg_ch])

        ratio = train_cfg.get('ratio', 0.01)

        # for contrast loss
        curr_iter = train_cfg['curr_iter']
        st_iter = train_cfg['st_iter']
        if curr_iter == st_iter + 1:
            # start semi-det training
            self.queue_ptr = 0
            self.queue_size = int(bs * l * ratio)
            self.queue_feats = paddle.zeros([self.queue_size, nc])
            self.queue_probs = paddle.zeros([self.queue_size, nc])
        contrast_loss_cfg = train_cfg['contrast_loss']
        temperature = contrast_loss_cfg.get('temperature', 0.2)
        alpha = contrast_loss_cfg.get('alpha', 0.9)
        smooth_iter = contrast_loss_cfg.get('smooth_iter', 100) + st_iter

        with paddle.no_grad():
            # Region Selection
            count_num = int(teacher_probs.shape[0] * ratio)
            max_vals = paddle.max(teacher_probs, 1)
            sorted_vals, sorted_inds = paddle.topk(max_vals,
                                                   teacher_probs.shape[0])
            mask = paddle.zeros_like(max_vals)
            mask[sorted_inds[:count_num]] = 1.
            fg_num = sorted_vals[:count_num].sum()
            b_mask = mask > 0.

            # for contrast loss
            probs = teacher_probs[b_mask].detach()
            if curr_iter > smooth_iter:  # memory-smoothing
                A = paddle.exp(
                    paddle.mm(teacher_probs[b_mask], self.queue_probs.t()) /
                    temperature)
                A = A / A.sum(1, keepdim=True)
                probs = alpha * probs + (1 - alpha) * paddle.mm(
                    A, self.queue_probs)
            n = student_probs[b_mask].shape[0]
            # update memory bank
            self.queue_feats[self.queue_ptr:self.queue_ptr +
                             n, :] = teacher_probs[b_mask].detach()
            self.queue_probs[self.queue_ptr:self.queue_ptr +
                             n, :] = teacher_probs[b_mask].detach()
            self.queue_ptr = (self.queue_ptr + n) % self.queue_size

        # embedding similarity
        sim = paddle.exp(
            paddle.mm(student_probs[b_mask], teacher_probs[b_mask].t()) / 0.2)
        sim_probs = sim / sim.sum(1, keepdim=True)
        # pseudo-label graph with self-loop
        Q = paddle.mm(probs, probs.t())
        Q.fill_diagonal_(1)
        pos_mask = (Q >= 0.5).astype('float32')
        Q = Q * pos_mask
        Q = Q / Q.sum(1, keepdim=True)
        # contrastive loss
        loss_contrast = -(paddle.log(sim_probs + 1e-7) * Q).sum(1)
        loss_contrast = loss_contrast.mean()

        # distill_loss_cls
        loss_cls = QFLv2(
            student_probs, teacher_probs, weight=mask, reduction="sum") / fg_num

        # distill_loss_iou
        inputs = paddle.concat(
            (-student_deltas[b_mask][..., :2], student_deltas[b_mask][..., 2:]),
            -1)
        targets = paddle.concat(
            (-teacher_deltas[b_mask][..., :2], teacher_deltas[b_mask][..., 2:]),
            -1)
        iou_loss = GIoULoss(reduction='mean')
        loss_iou = iou_loss(inputs, targets)

        # distill_loss_dfl
        loss_dfl = F.cross_entropy(
            student_dfl[b_mask].reshape([-1, reg_ch]),
            teacher_dfl[b_mask].reshape([-1, reg_ch]),
            soft_label=True,
            reduction='mean')

        return {
            "distill_loss_cls": loss_cls,
            "distill_loss_iou": loss_iou,
            "distill_loss_dfl": loss_dfl,
            "distill_loss_contrast": loss_contrast,
            "fg_sum": fg_num,
        }