post_process.py 14.8 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
import paddle.nn.functional as F
from ppdet.core.workspace import register
from ppdet.modeling.bbox_utils import nonempty_bbox
from .transformers import bbox_cxcywh_to_xyxy

__all__ = ['BBoxPostProcess', 'DETRPostProcess']


@register
class BBoxPostProcess(object):
    __shared__ = ['num_classes', 'export_onnx', 'export_eb']
    __inject__ = ['decode', 'nms']

    def __init__(self,
                 num_classes=80,
                 decode=None,
                 nms=None,
                 export_onnx=False,
                 export_eb=False):
        super(BBoxPostProcess, self).__init__()
        self.num_classes = num_classes
        self.decode = decode
        self.nms = nms
        self.export_onnx = export_onnx
        self.export_eb = export_eb

    def __call__(self, head_out, rois, im_shape, scale_factor):
        """
        Decode the bbox and do NMS if needed.

        Args:
            head_out (tuple): bbox_pred and cls_prob of bbox_head output.
            rois (tuple): roi and rois_num of rpn_head output.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
            export_onnx (bool): whether export model to onnx
        Returns:
            bbox_pred (Tensor): The output prediction with shape [N, 6], including
                labels, scores and bboxes. The size of bboxes are corresponding
                to the input image, the bboxes may be used in other branch.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
        """
        if self.nms is not None:
            bboxes, score = self.decode(head_out, rois, im_shape, scale_factor)
            bbox_pred, bbox_num, _ = self.nms(bboxes, score, self.num_classes)

        else:
            bbox_pred, bbox_num = self.decode(head_out, rois, im_shape,
                                              scale_factor)

        if self.export_onnx:
            # add fake box after postprocess when exporting onnx 
            fake_bboxes = paddle.to_tensor(
                np.array(
                    [[0., 0.0, 0.0, 0.0, 1.0, 1.0]], dtype='float32'))

            bbox_pred = paddle.concat([bbox_pred, fake_bboxes])
            bbox_num = bbox_num + 1

        return bbox_pred, bbox_num

    def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
        """
        Rescale, clip and filter the bbox from the output of NMS to 
        get final prediction. 

        Notes:
        Currently only support bs = 1.

        Args:
            bboxes (Tensor): The output bboxes with shape [N, 6] after decode
                and NMS, including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
        Returns:
            pred_result (Tensor): The final prediction results with shape [N, 6]
                including labels, scores and bboxes.
        """
        if self.export_eb:
            # enable rcnn models for edgeboard hw to skip the following postprocess.
            return bboxes, bboxes, bbox_num

        if not self.export_onnx:
            bboxes_list = []
            bbox_num_list = []
            id_start = 0
            fake_bboxes = paddle.to_tensor(
                np.array(
                    [[0., 0.0, 0.0, 0.0, 1.0, 1.0]], dtype='float32'))
            fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))

            # add fake bbox when output is empty for each batch
            for i in range(bbox_num.shape[0]):
                if bbox_num[i] == 0:
                    bboxes_i = fake_bboxes
                    bbox_num_i = fake_bbox_num
                else:
                    bboxes_i = bboxes[id_start:id_start + bbox_num[i], :]
                    bbox_num_i = bbox_num[i]
                    id_start += bbox_num[i]
                bboxes_list.append(bboxes_i)
                bbox_num_list.append(bbox_num_i)
            bboxes = paddle.concat(bboxes_list)
            bbox_num = paddle.concat(bbox_num_list)

        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)

        if not self.export_onnx:
            origin_shape_list = []
            scale_factor_list = []
            # scale_factor: scale_y, scale_x
            for i in range(bbox_num.shape[0]):
                expand_shape = paddle.expand(origin_shape[i:i + 1, :],
                                             [bbox_num[i], 2])
                scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
                scale = paddle.concat([scale_x, scale_y, scale_x, scale_y])
                expand_scale = paddle.expand(scale, [bbox_num[i], 4])
                origin_shape_list.append(expand_shape)
                scale_factor_list.append(expand_scale)

            self.origin_shape_list = paddle.concat(origin_shape_list)
            scale_factor_list = paddle.concat(scale_factor_list)

        else:
            # simplify the computation for bs=1 when exporting onnx
            scale_y, scale_x = scale_factor[0][0], scale_factor[0][1]
            scale = paddle.concat(
                [scale_x, scale_y, scale_x, scale_y]).unsqueeze(0)
            self.origin_shape_list = paddle.expand(origin_shape,
                                                   [bbox_num[0], 2])
            scale_factor_list = paddle.expand(scale, [bbox_num[0], 4])

        # bboxes: [N, 6], label, score, bbox
        pred_label = bboxes[:, 0:1]
        pred_score = bboxes[:, 1:2]
        pred_bbox = bboxes[:, 2:]
        # rescale bbox to original image
        scaled_bbox = pred_bbox / scale_factor_list
        origin_h = self.origin_shape_list[:, 0]
        origin_w = self.origin_shape_list[:, 1]
        zeros = paddle.zeros_like(origin_h)
        # clip bbox to [0, original_size]
        x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros)
        y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros)
        x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros)
        y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros)
        pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1)
        # filter empty bbox
        keep_mask = nonempty_bbox(pred_bbox, return_mask=True)
        keep_mask = paddle.unsqueeze(keep_mask, [1])
        pred_label = paddle.where(keep_mask, pred_label,
                                  paddle.ones_like(pred_label) * -1)
        pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1)
        return bboxes, pred_result, bbox_num

    def get_origin_shape(self, ):
        return self.origin_shape_list


@register
class DETRPostProcess(object):
    __shared__ = ['num_classes', 'use_focal_loss', 'with_mask']
    __inject__ = []

    def __init__(self,
                 num_classes=80,
                 num_top_queries=100,
                 dual_queries=False,
                 dual_groups=0,
                 use_focal_loss=False,
                 with_mask=False,
                 mask_threshold=0.5,
                 use_avg_mask_score=False,
                 bbox_decode_type='origin'):
        super(DETRPostProcess, self).__init__()
        assert bbox_decode_type in ['origin', 'pad']

        self.num_classes = num_classes
        self.num_top_queries = num_top_queries
        self.dual_queries = dual_queries
        self.dual_groups = dual_groups
        self.use_focal_loss = use_focal_loss
        self.with_mask = with_mask
        self.mask_threshold = mask_threshold
        self.use_avg_mask_score = use_avg_mask_score
        self.bbox_decode_type = bbox_decode_type

    def _mask_postprocess(self, mask_pred, score_pred, index):
        mask_score = F.sigmoid(paddle.gather_nd(mask_pred, index))
        mask_pred = (mask_score > self.mask_threshold).astype(mask_score.dtype)
        if self.use_avg_mask_score:
            avg_mask_score = (mask_pred * mask_score).sum([-2, -1]) / (
                mask_pred.sum([-2, -1]) + 1e-6)
            score_pred *= avg_mask_score

        return mask_pred[0].astype('int32'), score_pred

    def __call__(self, head_out, im_shape, scale_factor, pad_shape):
        """
        Decode the bbox and mask.

        Args:
            head_out (tuple): bbox_pred, cls_logit and masks of bbox_head output.
            im_shape (Tensor): The shape of the input image without padding.
            scale_factor (Tensor): The scale factor of the input image.
            pad_shape (Tensor): The shape of the input image with padding.
        Returns:
            bbox_pred (Tensor): The output prediction with shape [N, 6], including
                labels, scores and bboxes. The size of bboxes are corresponding
                to the input image, the bboxes may be used in other branch.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [bs], and is N.
        """
        bboxes, logits, masks = head_out
        if self.dual_queries:
            num_queries = logits.shape[1]
            logits, bboxes = logits[:, :int(num_queries // (self.dual_groups + 1)), :], \
                             bboxes[:, :int(num_queries // (self.dual_groups + 1)), :]

        bbox_pred = bbox_cxcywh_to_xyxy(bboxes)
        # calculate the original shape of the image
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
        img_h, img_w = paddle.split(origin_shape, 2, axis=-1)
        if self.bbox_decode_type == 'pad':
            # calculate the shape of the image with padding
            out_shape = pad_shape / im_shape * origin_shape
            out_shape = out_shape.flip(1).tile([1, 2]).unsqueeze(1)
        elif self.bbox_decode_type == 'origin':
            out_shape = origin_shape.flip(1).tile([1, 2]).unsqueeze(1)
        else:
            raise Exception(
                f'Wrong `bbox_decode_type`: {self.bbox_decode_type}.')
        bbox_pred *= out_shape

        scores = F.sigmoid(logits) if self.use_focal_loss else F.softmax(
            logits)[:, :, :-1]

        if not self.use_focal_loss:
            scores, labels = scores.max(-1), scores.argmax(-1)
            if scores.shape[1] > self.num_top_queries:
                scores, index = paddle.topk(
                    scores, self.num_top_queries, axis=-1)
                batch_ind = paddle.arange(
                    end=scores.shape[0]).unsqueeze(-1).tile(
                        [1, self.num_top_queries])
                index = paddle.stack([batch_ind, index], axis=-1)
                labels = paddle.gather_nd(labels, index)
                bbox_pred = paddle.gather_nd(bbox_pred, index)
        else:
            scores, index = paddle.topk(
                scores.flatten(1), self.num_top_queries, axis=-1)
            labels = index % self.num_classes
            index = index // self.num_classes
            batch_ind = paddle.arange(end=scores.shape[0]).unsqueeze(-1).tile(
                [1, self.num_top_queries])
            index = paddle.stack([batch_ind, index], axis=-1)
            bbox_pred = paddle.gather_nd(bbox_pred, index)

        mask_pred = None
        if self.with_mask:
            assert masks is not None
            masks = F.interpolate(
                masks, scale_factor=4, mode="bilinear", align_corners=False)
            # TODO: Support prediction with bs>1.
            # remove padding for input image
            h, w = im_shape.astype('int32')[0]
            masks = masks[..., :h, :w]
            # get pred_mask in the original resolution.
            img_h = img_h[0].astype('int32')
            img_w = img_w[0].astype('int32')
            masks = F.interpolate(
                masks,
                size=(img_h, img_w),
                mode="bilinear",
                align_corners=False)
            mask_pred, scores = self._mask_postprocess(masks, scores, index)

        bbox_pred = paddle.concat(
            [
                labels.unsqueeze(-1).astype('float32'), scores.unsqueeze(-1),
                bbox_pred
            ],
            axis=-1)
        bbox_num = paddle.to_tensor(
            self.num_top_queries, dtype='int32').tile([bbox_pred.shape[0]])
        bbox_pred = bbox_pred.reshape([-1, 6])
        return bbox_pred, bbox_num, mask_pred


def multiclass_nms(bboxs, num_classes, match_threshold=0.6, match_metric='iou'):
    final_boxes = []
    for c in range(num_classes):
        idxs = bboxs[:, 0] == c
        if np.count_nonzero(idxs) == 0: continue
        r = nms(bboxs[idxs, 1:], match_threshold, match_metric)
        final_boxes.append(np.concatenate([np.full((r.shape[0], 1), c), r], 1))
    return final_boxes


def nms(dets, match_threshold=0.6, match_metric='iou'):
    """ Apply NMS to avoid detecting too many overlapping bounding boxes.
        Args:
            dets: shape [N, 5], [score, x1, y1, x2, y2]
            match_metric: 'iou' or 'ios'
            match_threshold: overlap thresh for match metric.
    """
    if dets.shape[0] == 0:
        return dets[[], :]
    scores = dets[:, 0]
    x1 = dets[:, 1]
    y1 = dets[:, 2]
    x2 = dets[:, 3]
    y2 = dets[:, 4]
    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]

    ndets = dets.shape[0]
    suppressed = np.zeros((ndets), dtype=np.int)

    for _i in range(ndets):
        i = order[_i]
        if suppressed[i] == 1:
            continue
        ix1 = x1[i]
        iy1 = y1[i]
        ix2 = x2[i]
        iy2 = y2[i]
        iarea = areas[i]
        for _j in range(_i + 1, ndets):
            j = order[_j]
            if suppressed[j] == 1:
                continue
            xx1 = max(ix1, x1[j])
            yy1 = max(iy1, y1[j])
            xx2 = min(ix2, x2[j])
            yy2 = min(iy2, y2[j])
            w = max(0.0, xx2 - xx1 + 1)
            h = max(0.0, yy2 - yy1 + 1)
            inter = w * h
            if match_metric == 'iou':
                union = iarea + areas[j] - inter
                match_value = inter / union
            elif match_metric == 'ios':
                smaller = min(iarea, areas[j])
                match_value = inter / smaller
            else:
                raise ValueError()
            if match_value >= match_threshold:
                suppressed[j] = 1
    keep = np.where(suppressed == 0)[0]
    dets = dets[keep, :]
    return dets