yolof_head.py 14.1 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from paddle.nn.initializer import Normal, Constant

from ppdet.modeling.layers import MultiClassNMS
from ppdet.core.workspace import register
from ppdet.modeling.bbox_utils import delta2bbox_v2

__all__ = ['YOLOFHead']

INF = 1e8


def reduce_mean(tensor):
    world_size = paddle.distributed.get_world_size()
    if world_size == 1:
        return tensor
    paddle.distributed.all_reduce(tensor)
    return tensor / world_size


def find_inside_anchor(feat_size, stride, num_anchors, im_shape):
    feat_h, feat_w = feat_size[:2]
    im_h, im_w = im_shape[:2]
    inside_h = min(int(np.ceil(im_h / stride)), feat_h)
    inside_w = min(int(np.ceil(im_w / stride)), feat_w)
    inside_mask = paddle.zeros([feat_h, feat_w], dtype=paddle.bool)
    inside_mask[:inside_h, :inside_w] = True
    inside_mask = inside_mask.unsqueeze(-1).expand(
        [feat_h, feat_w, num_anchors])
    return inside_mask.reshape([-1])


@register
class YOLOFFeat(nn.Layer):
    def __init__(self,
                 feat_in=256,
                 feat_out=256,
                 num_cls_convs=2,
                 num_reg_convs=4,
                 norm_type='bn'):
        super(YOLOFFeat, self).__init__()
        assert norm_type == 'bn', "YOLOFFeat only support BN now."
        self.feat_in = feat_in
        self.feat_out = feat_out
        self.num_cls_convs = num_cls_convs
        self.num_reg_convs = num_reg_convs
        self.norm_type = norm_type

        cls_subnet, reg_subnet = [], []
        for i in range(self.num_cls_convs):
            feat_in = self.feat_in if i == 0 else self.feat_out
            cls_subnet.append(
                nn.Conv2D(
                    feat_in,
                    self.feat_out,
                    3,
                    stride=1,
                    padding=1,
                    weight_attr=ParamAttr(initializer=Normal(
                        mean=0.0, std=0.01)),
                    bias_attr=ParamAttr(initializer=Constant(value=0.0))))
            cls_subnet.append(
                nn.BatchNorm2D(
                    self.feat_out,
                    weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
                    bias_attr=ParamAttr(regularizer=L2Decay(0.0))))
            cls_subnet.append(nn.ReLU())

        for i in range(self.num_reg_convs):
            feat_in = self.feat_in if i == 0 else self.feat_out
            reg_subnet.append(
                nn.Conv2D(
                    feat_in,
                    self.feat_out,
                    3,
                    stride=1,
                    padding=1,
                    weight_attr=ParamAttr(initializer=Normal(
                        mean=0.0, std=0.01)),
                    bias_attr=ParamAttr(initializer=Constant(value=0.0))))
            reg_subnet.append(
                nn.BatchNorm2D(
                    self.feat_out,
                    weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
                    bias_attr=ParamAttr(regularizer=L2Decay(0.0))))
            reg_subnet.append(nn.ReLU())

        self.cls_subnet = nn.Sequential(*cls_subnet)
        self.reg_subnet = nn.Sequential(*reg_subnet)

    def forward(self, fpn_feat):
        cls_feat = self.cls_subnet(fpn_feat)
        reg_feat = self.reg_subnet(fpn_feat)
        return cls_feat, reg_feat


@register
class YOLOFHead(nn.Layer):
    __shared__ = ['num_classes', 'trt', 'exclude_nms']
    __inject__ = [
        'conv_feat', 'anchor_generator', 'bbox_assigner', 'loss_class',
        'loss_bbox', 'nms'
    ]

    def __init__(self,
                 num_classes=80,
                 conv_feat='YOLOFFeat',
                 anchor_generator='AnchorGenerator',
                 bbox_assigner='UniformAssigner',
                 loss_class='FocalLoss',
                 loss_bbox='GIoULoss',
                 ctr_clip=32.0,
                 delta_mean=[0.0, 0.0, 0.0, 0.0],
                 delta_std=[1.0, 1.0, 1.0, 1.0],
                 nms='MultiClassNMS',
                 prior_prob=0.01,
                 nms_pre=1000,
                 use_inside_anchor=False,
                 trt=False,
                 exclude_nms=False):
        super(YOLOFHead, self).__init__()
        self.num_classes = num_classes
        self.conv_feat = conv_feat
        self.anchor_generator = anchor_generator
        self.na = self.anchor_generator.num_anchors
        self.bbox_assigner = bbox_assigner
        self.loss_class = loss_class
        self.loss_bbox = loss_bbox
        self.ctr_clip = ctr_clip
        self.delta_mean = delta_mean
        self.delta_std = delta_std
        self.nms = nms
        self.nms_pre = nms_pre
        self.use_inside_anchor = use_inside_anchor
        if isinstance(self.nms, MultiClassNMS) and trt:
            self.nms.trt = trt
        self.exclude_nms = exclude_nms

        bias_init_value = -math.log((1 - prior_prob) / prior_prob)
        self.cls_score = self.add_sublayer(
            'cls_score',
            nn.Conv2D(
                in_channels=conv_feat.feat_out,
                out_channels=self.num_classes * self.na,
                kernel_size=3,
                stride=1,
                padding=1,
                weight_attr=ParamAttr(initializer=Normal(
                    mean=0.0, std=0.01)),
                bias_attr=ParamAttr(initializer=Constant(
                    value=bias_init_value))))

        self.bbox_pred = self.add_sublayer(
            'bbox_pred',
            nn.Conv2D(
                in_channels=conv_feat.feat_out,
                out_channels=4 * self.na,
                kernel_size=3,
                stride=1,
                padding=1,
                weight_attr=ParamAttr(initializer=Normal(
                    mean=0.0, std=0.01)),
                bias_attr=ParamAttr(initializer=Constant(value=0))))

        self.object_pred = self.add_sublayer(
            'object_pred',
            nn.Conv2D(
                in_channels=conv_feat.feat_out,
                out_channels=self.na,
                kernel_size=3,
                stride=1,
                padding=1,
                weight_attr=ParamAttr(initializer=Normal(
                    mean=0.0, std=0.01)),
                bias_attr=ParamAttr(initializer=Constant(value=0))))

    def forward(self, feats, targets=None):
        assert len(feats) == 1, "YOLOF only has one level feature."
        conv_cls_feat, conv_reg_feat = self.conv_feat(feats[0])
        cls_logits = self.cls_score(conv_cls_feat)
        objectness = self.object_pred(conv_reg_feat)
        bboxes_reg = self.bbox_pred(conv_reg_feat)

        N, C, H, W = paddle.shape(cls_logits)[:]
        cls_logits = cls_logits.reshape((N, self.na, self.num_classes, H, W))
        objectness = objectness.reshape((N, self.na, 1, H, W))
        norm_cls_logits = cls_logits + objectness - paddle.log(
            1.0 + paddle.clip(
                cls_logits.exp(), max=INF) + paddle.clip(
                    objectness.exp(), max=INF))
        norm_cls_logits = norm_cls_logits.reshape((N, C, H, W))

        anchors = self.anchor_generator([norm_cls_logits])

        if self.training:
            yolof_losses = self.get_loss(
                [anchors[0], norm_cls_logits, bboxes_reg], targets)
            return yolof_losses
        else:
            return anchors[0], norm_cls_logits, bboxes_reg

    def get_loss(self, head_outs, targets):
        anchors, cls_logits, bbox_preds = head_outs

        feat_size = cls_logits.shape[-2:]
        cls_logits = cls_logits.transpose([0, 2, 3, 1])
        cls_logits = cls_logits.reshape([0, -1, self.num_classes])
        bbox_preds = bbox_preds.transpose([0, 2, 3, 1])
        bbox_preds = bbox_preds.reshape([0, -1, 4])

        num_pos_list = []
        cls_pred_list, cls_tar_list = [], []
        reg_pred_list, reg_tar_list = [], []
        # find and gather preds and targets in each image
        for cls_logit, bbox_pred, gt_bbox, gt_class, im_shape in zip(
                cls_logits, bbox_preds, targets['gt_bbox'], targets['gt_class'],
                targets['im_shape']):
            if self.use_inside_anchor:
                inside_mask = find_inside_anchor(
                    feat_size, self.anchor_generator.strides[0], self.na,
                    im_shape.tolist())
                cls_logit = cls_logit[inside_mask]
                bbox_pred = bbox_pred[inside_mask]
                anchors = anchors[inside_mask]

            bbox_pred = delta2bbox_v2(
                bbox_pred,
                anchors,
                self.delta_mean,
                self.delta_std,
                ctr_clip=self.ctr_clip)
            bbox_pred = bbox_pred.reshape([-1, bbox_pred.shape[-1]])

            # -2:ignore, -1:neg, >=0:pos
            match_labels, pos_bbox_pred, pos_bbox_tar = self.bbox_assigner(
                bbox_pred, anchors, gt_bbox)
            pos_mask = (match_labels >= 0)
            neg_mask = (match_labels == -1)
            chosen_mask = paddle.logical_or(pos_mask, neg_mask)

            gt_class = gt_class.reshape([-1])
            bg_class = paddle.to_tensor(
                [self.num_classes], dtype=gt_class.dtype)
            # a trick to assign num_classes to negative targets
            gt_class = paddle.concat([gt_class, bg_class], axis=-1)
            match_labels = paddle.where(
                neg_mask,
                paddle.full_like(match_labels, gt_class.size - 1), match_labels)
            num_pos_list.append(max(1.0, pos_mask.sum().item()))

            cls_pred_list.append(cls_logit[chosen_mask])
            cls_tar_list.append(gt_class[match_labels[chosen_mask]])
            reg_pred_list.append(pos_bbox_pred)
            reg_tar_list.append(pos_bbox_tar)

        num_tot_pos = paddle.to_tensor(sum(num_pos_list))
        num_tot_pos = reduce_mean(num_tot_pos).item()
        num_tot_pos = max(1.0, num_tot_pos)

        cls_pred = paddle.concat(cls_pred_list)
        cls_tar = paddle.concat(cls_tar_list)
        cls_loss = self.loss_class(
            cls_pred, cls_tar, reduction='sum') / num_tot_pos

        reg_pred_list = [_ for _ in reg_pred_list if _ is not None]
        reg_tar_list = [_ for _ in reg_tar_list if _ is not None]
        if len(reg_pred_list) == 0:
            reg_loss = bbox_preds.sum() * 0.0
        else:
            reg_pred = paddle.concat(reg_pred_list)
            reg_tar = paddle.concat(reg_tar_list)
            reg_loss = self.loss_bbox(reg_pred, reg_tar).sum() / num_tot_pos

        yolof_losses = {
            'loss': cls_loss + reg_loss,
            'loss_cls': cls_loss,
            'loss_reg': reg_loss,
        }
        return yolof_losses

    def get_bboxes_single(self,
                          anchors,
                          cls_scores,
                          bbox_preds,
                          im_shape,
                          scale_factor,
                          rescale=True):
        assert len(cls_scores) == len(bbox_preds)
        mlvl_bboxes = []
        mlvl_scores = []
        for anchor, cls_score, bbox_pred in zip(anchors, cls_scores,
                                                bbox_preds):
            cls_score = cls_score.reshape([-1, self.num_classes])
            bbox_pred = bbox_pred.reshape([-1, 4])
            if self.nms_pre is not None and cls_score.shape[0] > self.nms_pre:
                max_score = cls_score.max(axis=1)
                _, topk_inds = max_score.topk(self.nms_pre)
                bbox_pred = bbox_pred.gather(topk_inds)
                anchor = anchor.gather(topk_inds)
                cls_score = cls_score.gather(topk_inds)

            bbox_pred = delta2bbox_v2(
                bbox_pred,
                anchor,
                self.delta_mean,
                self.delta_std,
                max_shape=im_shape,
                ctr_clip=self.ctr_clip).squeeze()
            mlvl_bboxes.append(bbox_pred)
            mlvl_scores.append(F.sigmoid(cls_score))
        mlvl_bboxes = paddle.concat(mlvl_bboxes)
        mlvl_bboxes = paddle.squeeze(mlvl_bboxes)
        if rescale:
            mlvl_bboxes = mlvl_bboxes / paddle.concat(
                [scale_factor[::-1], scale_factor[::-1]])
        mlvl_scores = paddle.concat(mlvl_scores)
        mlvl_scores = mlvl_scores.transpose([1, 0])
        return mlvl_bboxes, mlvl_scores

    def decode(self, anchors, cls_scores, bbox_preds, im_shape, scale_factor):
        batch_bboxes = []
        batch_scores = []
        for img_id in range(cls_scores[0].shape[0]):
            num_lvls = len(cls_scores)
            cls_score_list = [cls_scores[i][img_id] for i in range(num_lvls)]
            bbox_pred_list = [bbox_preds[i][img_id] for i in range(num_lvls)]
            bboxes, scores = self.get_bboxes_single(
                anchors, cls_score_list, bbox_pred_list, im_shape[img_id],
                scale_factor[img_id])
            batch_bboxes.append(bboxes)
            batch_scores.append(scores)
        batch_bboxes = paddle.stack(batch_bboxes, 0)
        batch_scores = paddle.stack(batch_scores, 0)
        return batch_bboxes, batch_scores

    def post_process(self, head_outs, im_shape, scale_factor):
        anchors, cls_scores, bbox_preds = head_outs
        cls_scores = cls_scores.transpose([0, 2, 3, 1])
        bbox_preds = bbox_preds.transpose([0, 2, 3, 1])
        pred_bboxes, pred_scores = self.decode(
            [anchors], [cls_scores], [bbox_preds], im_shape, scale_factor)

        if self.exclude_nms:
            # `exclude_nms=True` just use in benchmark
            return pred_bboxes.sum(), pred_scores.sum()
        else:
            bbox_pred, bbox_num, _ = self.nms(pred_bboxes, pred_scores)
            return bbox_pred, bbox_num