yolo_head.py 16.6 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from ppdet.core.workspace import register

import math
import numpy as np
from ..initializer import bias_init_with_prob, constant_
from ..backbones.csp_darknet import BaseConv, DWConv
from ..losses import IouLoss
from ppdet.modeling.assigners.simota_assigner import SimOTAAssigner
from ppdet.modeling.bbox_utils import bbox_overlaps
from ppdet.modeling.layers import MultiClassNMS

__all__ = ['YOLOv3Head', 'YOLOXHead']


def _de_sigmoid(x, eps=1e-7):
    x = paddle.clip(x, eps, 1. / eps)
    x = paddle.clip(1. / x - 1., eps, 1. / eps)
    x = -paddle.log(x)
    return x


@register
class YOLOv3Head(nn.Layer):
    __shared__ = ['num_classes', 'data_format']
    __inject__ = ['loss']

    def __init__(self,
                 in_channels=[1024, 512, 256],
                 anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
                          [59, 119], [116, 90], [156, 198], [373, 326]],
                 anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]],
                 num_classes=80,
                 loss='YOLOv3Loss',
                 iou_aware=False,
                 iou_aware_factor=0.4,
                 data_format='NCHW'):
        """
        Head for YOLOv3 network

        Args:
            num_classes (int): number of foreground classes
            anchors (list): anchors
            anchor_masks (list): anchor masks
            loss (object): YOLOv3Loss instance
            iou_aware (bool): whether to use iou_aware
            iou_aware_factor (float): iou aware factor
            data_format (str): data format, NCHW or NHWC
        """
        super(YOLOv3Head, self).__init__()
        assert len(in_channels) > 0, "in_channels length should > 0"
        self.in_channels = in_channels
        self.num_classes = num_classes
        self.loss = loss

        self.iou_aware = iou_aware
        self.iou_aware_factor = iou_aware_factor

        self.parse_anchor(anchors, anchor_masks)
        self.num_outputs = len(self.anchors)
        self.data_format = data_format

        self.yolo_outputs = []
        for i in range(len(self.anchors)):

            if self.iou_aware:
                num_filters = len(self.anchors[i]) * (self.num_classes + 6)
            else:
                num_filters = len(self.anchors[i]) * (self.num_classes + 5)
            name = 'yolo_output.{}'.format(i)
            conv = nn.Conv2D(
                in_channels=self.in_channels[i],
                out_channels=num_filters,
                kernel_size=1,
                stride=1,
                padding=0,
                data_format=data_format,
                bias_attr=ParamAttr(regularizer=L2Decay(0.)))
            conv.skip_quant = True
            yolo_output = self.add_sublayer(name, conv)
            self.yolo_outputs.append(yolo_output)

    def parse_anchor(self, anchors, anchor_masks):
        self.anchors = [[anchors[i] for i in mask] for mask in anchor_masks]
        self.mask_anchors = []
        anchor_num = len(anchors)
        for masks in anchor_masks:
            self.mask_anchors.append([])
            for mask in masks:
                assert mask < anchor_num, "anchor mask index overflow"
                self.mask_anchors[-1].extend(anchors[mask])

    def forward(self, feats, targets=None):
        assert len(feats) == len(self.anchors)
        yolo_outputs = []
        for i, feat in enumerate(feats):
            yolo_output = self.yolo_outputs[i](feat)
            if self.data_format == 'NHWC':
                yolo_output = paddle.transpose(yolo_output, [0, 3, 1, 2])
            yolo_outputs.append(yolo_output)

        if self.training:
            return self.loss(yolo_outputs, targets, self.anchors)
        else:
            if self.iou_aware:
                y = []
                for i, out in enumerate(yolo_outputs):
                    na = len(self.anchors[i])
                    ioup, x = out[:, 0:na, :, :], out[:, na:, :, :]
                    b, c, h, w = x.shape
                    no = c // na
                    x = x.reshape((b, na, no, h * w))
                    ioup = ioup.reshape((b, na, 1, h * w))
                    obj = x[:, :, 4:5, :]
                    ioup = F.sigmoid(ioup)
                    obj = F.sigmoid(obj)
                    obj_t = (obj**(1 - self.iou_aware_factor)) * (
                        ioup**self.iou_aware_factor)
                    obj_t = _de_sigmoid(obj_t)
                    loc_t = x[:, :, :4, :]
                    cls_t = x[:, :, 5:, :]
                    y_t = paddle.concat([loc_t, obj_t, cls_t], axis=2)
                    y_t = y_t.reshape((b, c, h, w))
                    y.append(y_t)
                return y
            else:
                return yolo_outputs

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }


@register
class YOLOXHead(nn.Layer):
    __shared__ = [
        'num_classes', 'width_mult', 'act', 'trt', 'exclude_nms',
        'exclude_post_process'
    ]
    __inject__ = ['assigner', 'nms']

    def __init__(self,
                 num_classes=80,
                 width_mult=1.0,
                 depthwise=False,
                 in_channels=[256, 512, 1024],
                 feat_channels=256,
                 fpn_strides=(8, 16, 32),
                 l1_epoch=285,
                 act='silu',
                 assigner=SimOTAAssigner(use_vfl=False),
                 nms='MultiClassNMS',
                 loss_weight={
                     'cls': 1.0,
                     'obj': 1.0,
                     'iou': 5.0,
                     'l1': 1.0,
                 },
                 trt=False,
                 exclude_post_process=False,
                 exclude_nms=False):
        super(YOLOXHead, self).__init__()
        self._dtype = paddle.framework.get_default_dtype()
        self.num_classes = num_classes
        assert len(in_channels) > 0, "in_channels length should > 0"
        self.in_channels = in_channels
        feat_channels = int(feat_channels * width_mult)
        self.fpn_strides = fpn_strides
        self.l1_epoch = l1_epoch
        self.assigner = assigner
        self.nms = nms
        if isinstance(self.nms, MultiClassNMS) and trt:
            self.nms.trt = trt
        self.exclude_nms = exclude_nms
        self.exclude_post_process = exclude_post_process
        self.loss_weight = loss_weight
        self.iou_loss = IouLoss(loss_weight=1.0)  # default loss_weight 2.5

        ConvBlock = DWConv if depthwise else BaseConv

        self.stem_conv = nn.LayerList()
        self.conv_cls = nn.LayerList()
        self.conv_reg = nn.LayerList()  # reg [x,y,w,h] + obj
        for in_c in self.in_channels:
            self.stem_conv.append(BaseConv(in_c, feat_channels, 1, 1, act=act))

            self.conv_cls.append(
                nn.Sequential(* [
                    ConvBlock(
                        feat_channels, feat_channels, 3, 1, act=act), ConvBlock(
                            feat_channels, feat_channels, 3, 1, act=act),
                    nn.Conv2D(
                        feat_channels,
                        self.num_classes,
                        1,
                        bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
                ]))

            self.conv_reg.append(
                nn.Sequential(* [
                    ConvBlock(
                        feat_channels, feat_channels, 3, 1, act=act),
                    ConvBlock(
                        feat_channels, feat_channels, 3, 1, act=act),
                    nn.Conv2D(
                        feat_channels,
                        4 + 1,  # reg [x,y,w,h] + obj
                        1,
                        bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
                ]))

        self._init_weights()

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    def _init_weights(self):
        bias_cls = bias_init_with_prob(0.01)
        bias_reg = paddle.full([5], math.log(5.), dtype=self._dtype)
        bias_reg[:2] = 0.
        bias_reg[-1] = bias_cls
        for cls_, reg_ in zip(self.conv_cls, self.conv_reg):
            constant_(cls_[-1].weight)
            constant_(cls_[-1].bias, bias_cls)
            constant_(reg_[-1].weight)
            reg_[-1].bias.set_value(bias_reg)

    def _generate_anchor_point(self, feat_sizes, strides, offset=0.):
        anchor_points, stride_tensor = [], []
        num_anchors_list = []
        for feat_size, stride in zip(feat_sizes, strides):
            h, w = feat_size
            x = (paddle.arange(w) + offset) * stride
            y = (paddle.arange(h) + offset) * stride
            y, x = paddle.meshgrid(y, x)
            anchor_points.append(paddle.stack([x, y], axis=-1).reshape([-1, 2]))
            stride_tensor.append(
                paddle.full(
                    [len(anchor_points[-1]), 1], stride, dtype=self._dtype))
            num_anchors_list.append(len(anchor_points[-1]))
        anchor_points = paddle.concat(anchor_points).astype(self._dtype)
        anchor_points.stop_gradient = True
        stride_tensor = paddle.concat(stride_tensor)
        stride_tensor.stop_gradient = True
        return anchor_points, stride_tensor, num_anchors_list

    def forward(self, feats, targets=None):
        assert len(feats) == len(self.fpn_strides), \
            "The size of feats is not equal to size of fpn_strides"

        feat_sizes = [[f.shape[-2], f.shape[-1]] for f in feats]
        cls_score_list, reg_pred_list = [], []
        obj_score_list = []
        for i, feat in enumerate(feats):
            feat = self.stem_conv[i](feat)
            cls_logit = self.conv_cls[i](feat)
            reg_pred = self.conv_reg[i](feat)
            # cls prediction
            cls_score = F.sigmoid(cls_logit)
            cls_score_list.append(cls_score.flatten(2).transpose([0, 2, 1]))
            # reg prediction
            reg_xywh, obj_logit = paddle.split(reg_pred, [4, 1], axis=1)
            reg_xywh = reg_xywh.flatten(2).transpose([0, 2, 1])
            reg_pred_list.append(reg_xywh)
            # obj prediction
            obj_score = F.sigmoid(obj_logit)
            obj_score_list.append(obj_score.flatten(2).transpose([0, 2, 1]))

        cls_score_list = paddle.concat(cls_score_list, axis=1)
        reg_pred_list = paddle.concat(reg_pred_list, axis=1)
        obj_score_list = paddle.concat(obj_score_list, axis=1)

        # bbox decode
        anchor_points, stride_tensor, _ =\
            self._generate_anchor_point(feat_sizes, self.fpn_strides)
        reg_xy, reg_wh = paddle.split(reg_pred_list, 2, axis=-1)
        reg_xy += (anchor_points / stride_tensor)
        reg_wh = paddle.exp(reg_wh) * 0.5
        bbox_pred_list = paddle.concat(
            [reg_xy - reg_wh, reg_xy + reg_wh], axis=-1)

        if self.training:
            anchor_points, stride_tensor, num_anchors_list =\
                self._generate_anchor_point(feat_sizes, self.fpn_strides, 0.5)
            yolox_losses = self.get_loss([
                cls_score_list, bbox_pred_list, obj_score_list, anchor_points,
                stride_tensor, num_anchors_list
            ], targets)
            return yolox_losses
        else:
            pred_scores = (cls_score_list * obj_score_list).sqrt()
            return pred_scores, bbox_pred_list, stride_tensor

    def get_loss(self, head_outs, targets):
        pred_cls, pred_bboxes, pred_obj,\
        anchor_points, stride_tensor, num_anchors_list = head_outs
        gt_labels = targets['gt_class']
        gt_bboxes = targets['gt_bbox']
        pred_scores = (pred_cls * pred_obj).sqrt()
        # label assignment
        center_and_strides = paddle.concat(
            [anchor_points, stride_tensor, stride_tensor], axis=-1)
        pos_num_list, label_list, bbox_target_list = [], [], []
        for pred_score, pred_bbox, gt_box, gt_label in zip(
                pred_scores.detach(),
                pred_bboxes.detach() * stride_tensor, gt_bboxes, gt_labels):
            pos_num, label, _, bbox_target = self.assigner(
                pred_score, center_and_strides, pred_bbox, gt_box, gt_label)
            pos_num_list.append(pos_num)
            label_list.append(label)
            bbox_target_list.append(bbox_target)
        labels = paddle.to_tensor(np.stack(label_list, axis=0))
        bbox_targets = paddle.to_tensor(np.stack(bbox_target_list, axis=0))
        bbox_targets /= stride_tensor  # rescale bbox

        # 1. obj score loss
        mask_positive = (labels != self.num_classes)
        loss_obj = F.binary_cross_entropy(
            pred_obj,
            mask_positive.astype(pred_obj.dtype).unsqueeze(-1),
            reduction='sum')

        num_pos = sum(pos_num_list)

        if num_pos > 0:
            num_pos = paddle.to_tensor(num_pos, dtype=self._dtype).clip(min=1)
            loss_obj /= num_pos

            # 2. iou loss
            bbox_mask = mask_positive.unsqueeze(-1).tile([1, 1, 4])
            pred_bboxes_pos = paddle.masked_select(pred_bboxes,
                                                   bbox_mask).reshape([-1, 4])
            assigned_bboxes_pos = paddle.masked_select(
                bbox_targets, bbox_mask).reshape([-1, 4])
            bbox_iou = bbox_overlaps(pred_bboxes_pos, assigned_bboxes_pos)
            bbox_iou = paddle.diag(bbox_iou)

            loss_iou = self.iou_loss(
                pred_bboxes_pos.split(
                    4, axis=-1),
                assigned_bboxes_pos.split(
                    4, axis=-1))
            loss_iou = loss_iou.sum() / num_pos

            # 3. cls loss
            cls_mask = mask_positive.unsqueeze(-1).tile(
                [1, 1, self.num_classes])
            pred_cls_pos = paddle.masked_select(
                pred_cls, cls_mask).reshape([-1, self.num_classes])
            assigned_cls_pos = paddle.masked_select(labels, mask_positive)
            assigned_cls_pos = F.one_hot(assigned_cls_pos,
                                         self.num_classes + 1)[..., :-1]
            assigned_cls_pos *= bbox_iou.unsqueeze(-1)
            loss_cls = F.binary_cross_entropy(
                pred_cls_pos, assigned_cls_pos, reduction='sum')
            loss_cls /= num_pos

            # 4. l1 loss
            if targets['epoch_id'] >= self.l1_epoch:
                loss_l1 = F.l1_loss(
                    pred_bboxes_pos, assigned_bboxes_pos, reduction='sum')
                loss_l1 /= num_pos
            else:
                loss_l1 = paddle.zeros([1])
                loss_l1.stop_gradient = False
        else:
            loss_cls = paddle.zeros([1])
            loss_iou = paddle.zeros([1])
            loss_l1 = paddle.zeros([1])
            loss_cls.stop_gradient = False
            loss_iou.stop_gradient = False
            loss_l1.stop_gradient = False

        loss = self.loss_weight['obj'] * loss_obj + \
               self.loss_weight['cls'] * loss_cls + \
               self.loss_weight['iou'] * loss_iou

        if targets['epoch_id'] >= self.l1_epoch:
            loss += (self.loss_weight['l1'] * loss_l1)

        yolox_losses = {
            'loss': loss,
            'loss_cls': loss_cls,
            'loss_obj': loss_obj,
            'loss_iou': loss_iou,
            'loss_l1': loss_l1,
        }
        return yolox_losses

    def post_process(self, head_outs, img_shape, scale_factor):
        pred_scores, pred_bboxes, stride_tensor = head_outs
        pred_scores = pred_scores.transpose([0, 2, 1])
        pred_bboxes *= stride_tensor

        if self.exclude_post_process:
            return paddle.concat(
                [pred_bboxes, pred_scores.transpose([0, 2, 1])], axis=-1)
        else:
            # scale bbox to origin
            scale_factor = scale_factor.flip(-1).tile([1, 2]).unsqueeze(1)
            pred_bboxes /= scale_factor
            if self.exclude_nms:
                # `exclude_nms=True` just use in benchmark
                return pred_bboxes, pred_scores
            else:
                bbox_pred, bbox_num, _ = self.nms(pred_bboxes, pred_scores)
                return bbox_pred, bbox_num