rtmdet_head.py 11.3 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register

from ..bbox_utils import batch_distance2bbox
from ..losses import GIoULoss, QualityFocalLoss, IouLoss
from ..initializer import bias_init_with_prob, constant_
from ppdet.modeling.backbones.csp_darknet import BaseConv
from ppdet.modeling.assigners.simota_assigner import SimOTAAssigner  #, DynamicSoftLabelAssigner
from ppdet.modeling.layers import MultiClassNMS
from paddle import ParamAttr
from paddle.nn.initializer import Normal

__all__ = ['RTMDetHead']


@register
class RTMDetHead(nn.Layer):
    __shared__ = [
        'num_classes', 'width_mult', 'trt', 'exclude_nms',
        'exclude_post_process'
    ]
    __inject__ = ['assigner', 'nms']

    def __init__(
            self,
            num_classes=80,
            width_mult=1.0,
            in_channels=[1024, 512, 256],
            feat_channels=256,
            stacked_convs=2,
            pred_kernel_size=1,
            act='swish',
            fpn_strides=(32, 16, 8),
            share_conv=True,
            exp_on_reg=False,
            assigner='SimOTAAssigner',  # just placeholder
            grid_cell_offset=0.,
            nms='MultiClassNMS',
            loss_weight={
                'cls': 1.0,
                'box': 2.0,
            },
            trt=False,
            exclude_nms=False,
            exclude_post_process=False):
        super(RTMDetHead, self).__init__()
        assert len(in_channels) > 0, "len(in_channels) should > 0"
        self._dtype = paddle.framework.get_default_dtype()
        self.in_channels = in_channels
        self.num_classes = num_classes
        self.fpn_strides = fpn_strides
        self.pred_kernel_size = pred_kernel_size
        self.stacked_convs = stacked_convs
        self.feat_channels = int(feat_channels * width_mult)
        self.share_conv = share_conv
        self.exp_on_reg = exp_on_reg
        self.grid_cell_offset = grid_cell_offset

        self.loss_cls = QualityFocalLoss()
        self.loss_box = IouLoss(loss_weight=1.0, giou=True)
        self.loss_weight = loss_weight
        self.assigner = assigner

        self.nms = nms
        if isinstance(self.nms, MultiClassNMS) and trt:
            self.nms.trt = trt
        self.exclude_nms = exclude_nms
        self.exclude_post_process = exclude_post_process

        # head
        self.cls_convs = nn.LayerList()
        self.reg_convs = nn.LayerList()
        self.cls_preds = nn.LayerList()
        self.reg_preds = nn.LayerList()
        for idx in range(len(self.fpn_strides)):
            cls_convs = nn.LayerList()
            reg_convs = nn.LayerList()
            for i in range(self.stacked_convs):
                chn = self.in_channels[idx] if i == 0 else self.feat_channels
                cls_convs.append(BaseConv(chn, self.feat_channels, 3, 1))
                reg_convs.append(BaseConv(chn, self.feat_channels, 3, 1))
            self.cls_convs.append(cls_convs)
            self.reg_convs.append(reg_convs)

            self.cls_preds.append(
                nn.Conv2D(
                    self.feat_channels,
                    self.num_classes,
                    self.pred_kernel_size,
                    padding=self.pred_kernel_size // 2,
                    weight_attr=ParamAttr(initializer=Normal(
                        mean=0., std=0.01)),
                    bias_attr=True))
            self.reg_preds.append(
                nn.Conv2D(
                    self.feat_channels,
                    4,
                    self.pred_kernel_size,
                    padding=self.pred_kernel_size // 2,
                    weight_attr=ParamAttr(initializer=Normal(
                        mean=0., std=0.01)),
                    bias_attr=True))

        self.share_conv = False  # TODO in deploy
        if self.share_conv:
            for n in range(len(self.fpn_strides)):
                for i in range(self.stacked_convs):
                    self.cls_convs[n][i].conv = self.cls_convs[0][i].conv
                    self.reg_convs[n][i].conv = self.reg_convs[0][i].conv
        self._init_weights()

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    def _init_weights(self):
        bias_cls = bias_init_with_prob(0.01)
        for cls_, reg_ in zip(self.cls_preds, self.reg_preds):
            constant_(cls_.weight)
            constant_(cls_.bias, bias_cls)
            constant_(reg_.weight)
            constant_(reg_.bias, 1.0)

    def forward_train(self, feats, targets):
        assert len(feats) == len(self.fpn_strides), \
            "The size of feats is not equal to size of fpn_strides"
        feat_sizes = [[f.shape[-2], f.shape[-1]] for f in feats]

        cls_score_list, reg_distri_list = [], []
        for idx, x in enumerate(feats):
            _, _, h, w = x.shape
            cls_feat = x
            reg_feat = x
            for cls_layer in self.cls_convs[idx]:
                cls_feat = cls_layer(cls_feat)
            cls_logit = self.cls_preds[idx](cls_feat)

            for reg_layer in self.reg_convs[idx]:
                reg_feat = reg_layer(reg_feat)
            if self.exp_on_reg:
                reg_dist = self.reg_preds[idx](reg_feat).exp()
            else:
                reg_dist = self.reg_preds[idx](reg_feat)
            reg_dist = reg_dist * self.fpn_strides[idx]
            # cls and reg
            cls_score = F.sigmoid(cls_logit)
            cls_score_list.append(cls_score.flatten(2).transpose([0, 2, 1]))
            reg_distri_list.append(reg_dist.flatten(2).transpose([0, 2, 1]))
        cls_score_list = paddle.concat(cls_score_list, axis=1)
        reg_distri_list = paddle.concat(reg_distri_list, axis=1)

        anchor_points, stride_tensor = self._generate_anchor_point(
            feat_sizes, self.fpn_strides, 0.)

        raise NotImplementedError('RTMDet training not implemented yet.')

        return self.get_loss(
            [cls_score_list, reg_distri_list, anchor_points,
             stride_tensor], targets)

    def _generate_anchors(self, feats=None, dtype='float32'):
        # just use in eval time
        anchor_points = []
        stride_tensor = []
        for i, stride in enumerate(self.fpn_strides):
            if feats is not None:
                _, _, h, w = feats[i].shape
            else:
                h = int(self.eval_size[0] / stride)
                w = int(self.eval_size[1] / stride)
            shift_x = paddle.arange(end=w) + self.grid_cell_offset
            shift_y = paddle.arange(end=h) + self.grid_cell_offset
            shift_y, shift_x = paddle.meshgrid(shift_y, shift_x)
            anchor_point = paddle.cast(
                paddle.stack(
                    [shift_x, shift_y], axis=-1), dtype=dtype)
            anchor_points.append(anchor_point.reshape([-1, 2]))
            stride_tensor.append(paddle.full([h * w, 1], stride, dtype=dtype))
        anchor_points = paddle.concat(anchor_points)
        stride_tensor = paddle.concat(stride_tensor)
        return anchor_points, stride_tensor

    def forward_eval(self, feats):
        anchor_points, stride_tensor = self._generate_anchors(feats)
        cls_score_list, reg_dist_list = [], []
        for idx, x in enumerate(feats):
            _, _, h, w = x.shape
            l = h * w
            cls_feat = x
            reg_feat = x
            for cls_layer in self.cls_convs[idx]:
                cls_feat = cls_layer(cls_feat)
            cls_logit = self.cls_preds[idx](cls_feat)

            for reg_layer in self.reg_convs[idx]:
                reg_feat = reg_layer(reg_feat)
            if self.exp_on_reg:
                reg_dist = self.reg_preds[idx](reg_feat).exp()
            else:
                reg_dist = self.reg_preds[idx](reg_feat)
            # cls and reg
            cls_score = F.sigmoid(cls_logit)
            cls_score_list.append(cls_score.reshape([-1, self.num_classes, l]))
            reg_dist_list.append(reg_dist.reshape([-1, 4, l]))

        cls_score_list = paddle.concat(cls_score_list, axis=-1)
        reg_dist_list = paddle.concat(reg_dist_list, axis=-1)

        return cls_score_list, reg_dist_list, anchor_points, stride_tensor

    def forward(self, feats, targets=None):
        assert len(feats) == len(self.fpn_strides), \
            "The size of feats is not equal to size of fpn_strides"

        if self.training:
            return self.forward_train(feats, targets)
        else:
            return self.forward_eval(feats)

    def _generate_anchor_point(self, feat_sizes, strides, offset=0.):
        anchor_points, stride_tensor = [], []
        num_anchors_list = []
        for feat_size, stride in zip(feat_sizes, strides):
            h, w = feat_size
            x = (paddle.arange(w) + offset) * stride
            y = (paddle.arange(h) + offset) * stride
            y, x = paddle.meshgrid(y, x)
            anchor_points.append(paddle.stack([x, y], axis=-1).reshape([-1, 2]))
            stride_tensor.append(
                paddle.full(
                    [len(anchor_points[-1]), 1], stride, dtype=self._dtype))
            num_anchors_list.append(len(anchor_points[-1]))
        anchor_points = paddle.concat(anchor_points).astype(self._dtype)
        anchor_points.stop_gradient = True
        stride_tensor = paddle.concat(stride_tensor)
        stride_tensor.stop_gradient = True
        return anchor_points, stride_tensor  #, num_anchors_list

    def get_loss(self, head_outs, targets):
        pred_cls, pred_bboxes, anchor_points, stride_tensor = head_outs
        raise NotImplementedError('RTMDet training not implemented yet.')

        gt_labels = targets['gt_class']
        gt_bboxes = targets['gt_bbox']

        loss_cls = paddle.zeros([1])
        loss_iou = paddle.zeros([1])
        loss = self.loss_weight['cls'] * loss_cls + \
               self.loss_weight['box'] * loss_iou
        return {
            'loss': loss,
            'loss_cls': loss_cls,
            'loss_box': loss_iou,
        }

    def post_process(self, head_outs, im_shape, scale_factor):
        pred_scores, pred_dist, anchor_points, stride_tensor = head_outs
        pred_bboxes = batch_distance2bbox(anchor_points,
                                          pred_dist.transpose([0, 2, 1]))
        pred_bboxes *= stride_tensor

        if self.exclude_post_process:
            return paddle.concat(
                [pred_bboxes, pred_scores.transpose([0, 2, 1])], axis=-1)
        else:
            # scale bbox to origin
            scale_factor = scale_factor.flip(-1).tile([1, 2]).unsqueeze(1)
            pred_bboxes /= scale_factor
            if self.exclude_nms:
                # `exclude_nms=True` just use in benchmark
                return pred_bboxes, pred_scores
            else:
                bbox_pred, bbox_num, _ = self.nms(pred_bboxes, pred_scores)
                return bbox_pred, bbox_num