bbox_utils.py 21.9 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import paddle
import numpy as np


def bbox2delta(src_boxes, tgt_boxes, weights=[1.0, 1.0, 1.0, 1.0]):
    """Encode bboxes to deltas.
    """
    src_w = src_boxes[:, 2] - src_boxes[:, 0]
    src_h = src_boxes[:, 3] - src_boxes[:, 1]
    src_ctr_x = src_boxes[:, 0] + 0.5 * src_w
    src_ctr_y = src_boxes[:, 1] + 0.5 * src_h

    tgt_w = tgt_boxes[:, 2] - tgt_boxes[:, 0]
    tgt_h = tgt_boxes[:, 3] - tgt_boxes[:, 1]
    tgt_ctr_x = tgt_boxes[:, 0] + 0.5 * tgt_w
    tgt_ctr_y = tgt_boxes[:, 1] + 0.5 * tgt_h

    wx, wy, ww, wh = weights
    dx = wx * (tgt_ctr_x - src_ctr_x) / src_w
    dy = wy * (tgt_ctr_y - src_ctr_y) / src_h
    dw = ww * paddle.log(tgt_w / src_w)
    dh = wh * paddle.log(tgt_h / src_h)

    deltas = paddle.stack((dx, dy, dw, dh), axis=1)
    return deltas


def delta2bbox(deltas, boxes, weights=[1.0, 1.0, 1.0, 1.0], max_shape=None):
    """Decode deltas to boxes. Used in RCNNBox,CascadeHead,RCNNHead,RetinaHead.
    Note: return tensor shape [n,1,4]
        If you want to add a reshape, please add after the calling code instead of here.
    """
    clip_scale = math.log(1000.0 / 16)

    widths = boxes[:, 2] - boxes[:, 0]
    heights = boxes[:, 3] - boxes[:, 1]
    ctr_x = boxes[:, 0] + 0.5 * widths
    ctr_y = boxes[:, 1] + 0.5 * heights

    wx, wy, ww, wh = weights
    dx = deltas[:, 0::4] / wx
    dy = deltas[:, 1::4] / wy
    dw = deltas[:, 2::4] / ww
    dh = deltas[:, 3::4] / wh
    # Prevent sending too large values into paddle.exp()
    dw = paddle.clip(dw, max=clip_scale)
    dh = paddle.clip(dh, max=clip_scale)

    pred_ctr_x = dx * widths.unsqueeze(1) + ctr_x.unsqueeze(1)
    pred_ctr_y = dy * heights.unsqueeze(1) + ctr_y.unsqueeze(1)
    pred_w = paddle.exp(dw) * widths.unsqueeze(1)
    pred_h = paddle.exp(dh) * heights.unsqueeze(1)

    pred_boxes = []
    pred_boxes.append(pred_ctr_x - 0.5 * pred_w)
    pred_boxes.append(pred_ctr_y - 0.5 * pred_h)
    pred_boxes.append(pred_ctr_x + 0.5 * pred_w)
    pred_boxes.append(pred_ctr_y + 0.5 * pred_h)
    pred_boxes = paddle.stack(pred_boxes, axis=-1)

    if max_shape is not None:
        pred_boxes[..., 0::2] = pred_boxes[..., 0::2].clip(
            min=0, max=max_shape[1])
        pred_boxes[..., 1::2] = pred_boxes[..., 1::2].clip(
            min=0, max=max_shape[0])
    return pred_boxes


def bbox2delta_v2(src_boxes,
                  tgt_boxes,
                  delta_mean=[0.0, 0.0, 0.0, 0.0],
                  delta_std=[1.0, 1.0, 1.0, 1.0]):
    """Encode bboxes to deltas.
    Modified from bbox2delta() which just use weight parameters to multiply deltas.
    """
    src_w = src_boxes[:, 2] - src_boxes[:, 0]
    src_h = src_boxes[:, 3] - src_boxes[:, 1]
    src_ctr_x = src_boxes[:, 0] + 0.5 * src_w
    src_ctr_y = src_boxes[:, 1] + 0.5 * src_h

    tgt_w = tgt_boxes[:, 2] - tgt_boxes[:, 0]
    tgt_h = tgt_boxes[:, 3] - tgt_boxes[:, 1]
    tgt_ctr_x = tgt_boxes[:, 0] + 0.5 * tgt_w
    tgt_ctr_y = tgt_boxes[:, 1] + 0.5 * tgt_h

    dx = (tgt_ctr_x - src_ctr_x) / src_w
    dy = (tgt_ctr_y - src_ctr_y) / src_h
    dw = paddle.log(tgt_w / src_w)
    dh = paddle.log(tgt_h / src_h)

    deltas = paddle.stack((dx, dy, dw, dh), axis=1)
    deltas = (
        deltas - paddle.to_tensor(delta_mean)) / paddle.to_tensor(delta_std)
    return deltas


def delta2bbox_v2(deltas,
                  boxes,
                  delta_mean=[0.0, 0.0, 0.0, 0.0],
                  delta_std=[1.0, 1.0, 1.0, 1.0],
                  max_shape=None,
                  ctr_clip=32.0):
    """Decode deltas to bboxes.
    Modified from delta2bbox() which just use weight parameters to be divided by deltas.
    Used in YOLOFHead.
    Note: return tensor shape [n,1,4]
        If you want to add a reshape, please add after the calling code instead of here.
    """
    clip_scale = math.log(1000.0 / 16)

    widths = boxes[:, 2] - boxes[:, 0]
    heights = boxes[:, 3] - boxes[:, 1]
    ctr_x = boxes[:, 0] + 0.5 * widths
    ctr_y = boxes[:, 1] + 0.5 * heights

    deltas = deltas * paddle.to_tensor(delta_std) + paddle.to_tensor(delta_mean)
    dx = deltas[:, 0::4]
    dy = deltas[:, 1::4]
    dw = deltas[:, 2::4]
    dh = deltas[:, 3::4]

    # Prevent sending too large values into paddle.exp()
    dx = dx * widths.unsqueeze(1)
    dy = dy * heights.unsqueeze(1)
    if ctr_clip is not None:
        dx = paddle.clip(dx, max=ctr_clip, min=-ctr_clip)
        dy = paddle.clip(dy, max=ctr_clip, min=-ctr_clip)
        dw = paddle.clip(dw, max=clip_scale)
        dh = paddle.clip(dh, max=clip_scale)
    else:
        dw = dw.clip(min=-clip_scale, max=clip_scale)
        dh = dh.clip(min=-clip_scale, max=clip_scale)

    pred_ctr_x = dx + ctr_x.unsqueeze(1)
    pred_ctr_y = dy + ctr_y.unsqueeze(1)
    pred_w = paddle.exp(dw) * widths.unsqueeze(1)
    pred_h = paddle.exp(dh) * heights.unsqueeze(1)

    pred_boxes = []
    pred_boxes.append(pred_ctr_x - 0.5 * pred_w)
    pred_boxes.append(pred_ctr_y - 0.5 * pred_h)
    pred_boxes.append(pred_ctr_x + 0.5 * pred_w)
    pred_boxes.append(pred_ctr_y + 0.5 * pred_h)
    pred_boxes = paddle.stack(pred_boxes, axis=-1)

    if max_shape is not None:
        pred_boxes[..., 0::2] = pred_boxes[..., 0::2].clip(
            min=0, max=max_shape[1])
        pred_boxes[..., 1::2] = pred_boxes[..., 1::2].clip(
            min=0, max=max_shape[0])
    return pred_boxes


def expand_bbox(bboxes, scale):
    w_half = (bboxes[:, 2] - bboxes[:, 0]) * .5
    h_half = (bboxes[:, 3] - bboxes[:, 1]) * .5
    x_c = (bboxes[:, 2] + bboxes[:, 0]) * .5
    y_c = (bboxes[:, 3] + bboxes[:, 1]) * .5

    w_half *= scale
    h_half *= scale

    bboxes_exp = np.zeros(bboxes.shape, dtype=np.float32)
    bboxes_exp[:, 0] = x_c - w_half
    bboxes_exp[:, 2] = x_c + w_half
    bboxes_exp[:, 1] = y_c - h_half
    bboxes_exp[:, 3] = y_c + h_half

    return bboxes_exp


def clip_bbox(boxes, im_shape):
    h, w = im_shape[0], im_shape[1]
    x1 = boxes[:, 0].clip(0, w)
    y1 = boxes[:, 1].clip(0, h)
    x2 = boxes[:, 2].clip(0, w)
    y2 = boxes[:, 3].clip(0, h)
    return paddle.stack([x1, y1, x2, y2], axis=1)


def nonempty_bbox(boxes, min_size=0, return_mask=False):
    w = boxes[:, 2] - boxes[:, 0]
    h = boxes[:, 3] - boxes[:, 1]
    mask = paddle.logical_and(h > min_size, w > min_size)
    if return_mask:
        return mask
    keep = paddle.nonzero(mask).flatten()
    return keep


def bbox_area(boxes):
    return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])


def bbox_overlaps(boxes1, boxes2):
    """
    Calculate overlaps between boxes1 and boxes2

    Args:
        boxes1 (Tensor): boxes with shape [M, 4]
        boxes2 (Tensor): boxes with shape [N, 4]

    Return:
        overlaps (Tensor): overlaps between boxes1 and boxes2 with shape [M, N]
    """
    M = boxes1.shape[0]
    N = boxes2.shape[0]
    if M * N == 0:
        return paddle.zeros([M, N], dtype='float32')
    area1 = bbox_area(boxes1)
    area2 = bbox_area(boxes2)

    xy_max = paddle.minimum(
        paddle.unsqueeze(boxes1, 1)[:, :, 2:], boxes2[:, 2:])
    xy_min = paddle.maximum(
        paddle.unsqueeze(boxes1, 1)[:, :, :2], boxes2[:, :2])
    width_height = xy_max - xy_min
    width_height = width_height.clip(min=0)
    inter = width_height.prod(axis=2)

    overlaps = paddle.where(inter > 0, inter /
                            (paddle.unsqueeze(area1, 1) + area2 - inter),
                            paddle.zeros_like(inter))
    return overlaps


def batch_bbox_overlaps(bboxes1,
                        bboxes2,
                        mode='iou',
                        is_aligned=False,
                        eps=1e-6):
    """Calculate overlap between two set of bboxes.
    If ``is_aligned `` is ``False``, then calculate the overlaps between each
    bbox of bboxes1 and bboxes2, otherwise the overlaps between each aligned
    pair of bboxes1 and bboxes2.
    Args:
        bboxes1 (Tensor): shape (B, m, 4) in <x1, y1, x2, y2> format or empty.
        bboxes2 (Tensor): shape (B, n, 4) in <x1, y1, x2, y2> format or empty.
            B indicates the batch dim, in shape (B1, B2, ..., Bn).
            If ``is_aligned `` is ``True``, then m and n must be equal.
        mode (str): "iou" (intersection over union) or "iof" (intersection over
            foreground).
        is_aligned (bool, optional): If True, then m and n must be equal.
            Default False.
        eps (float, optional): A value added to the denominator for numerical
            stability. Default 1e-6.
    Returns:
        Tensor: shape (m, n) if ``is_aligned `` is False else shape (m,)
    """
    assert mode in ['iou', 'iof', 'giou'], 'Unsupported mode {}'.format(mode)
    # Either the boxes are empty or the length of boxes's last dimenstion is 4
    assert (bboxes1.shape[-1] == 4 or bboxes1.shape[0] == 0)
    assert (bboxes2.shape[-1] == 4 or bboxes2.shape[0] == 0)

    # Batch dim must be the same
    # Batch dim: (B1, B2, ... Bn)
    assert bboxes1.shape[:-2] == bboxes2.shape[:-2]
    batch_shape = bboxes1.shape[:-2]

    rows = bboxes1.shape[-2] if bboxes1.shape[0] > 0 else 0
    cols = bboxes2.shape[-2] if bboxes2.shape[0] > 0 else 0
    if is_aligned:
        assert rows == cols

    if rows * cols == 0:
        if is_aligned:
            return paddle.full(batch_shape + (rows, ), 1)
        else:
            return paddle.full(batch_shape + (rows, cols), 1)

    area1 = (bboxes1[:, 2] - bboxes1[:, 0]) * (bboxes1[:, 3] - bboxes1[:, 1])
    area2 = (bboxes2[:, 2] - bboxes2[:, 0]) * (bboxes2[:, 3] - bboxes2[:, 1])

    if is_aligned:
        lt = paddle.maximum(bboxes1[:, :2], bboxes2[:, :2])  # [B, rows, 2]
        rb = paddle.minimum(bboxes1[:, 2:], bboxes2[:, 2:])  # [B, rows, 2]

        wh = (rb - lt).clip(min=0)  # [B, rows, 2]
        overlap = wh[:, 0] * wh[:, 1]

        if mode in ['iou', 'giou']:
            union = area1 + area2 - overlap
        else:
            union = area1
        if mode == 'giou':
            enclosed_lt = paddle.minimum(bboxes1[:, :2], bboxes2[:, :2])
            enclosed_rb = paddle.maximum(bboxes1[:, 2:], bboxes2[:, 2:])
    else:
        lt = paddle.maximum(bboxes1[:, :2].reshape([rows, 1, 2]),
                            bboxes2[:, :2])  # [B, rows, cols, 2]
        rb = paddle.minimum(bboxes1[:, 2:].reshape([rows, 1, 2]),
                            bboxes2[:, 2:])  # [B, rows, cols, 2]

        wh = (rb - lt).clip(min=0)  # [B, rows, cols, 2]
        overlap = wh[:, :, 0] * wh[:, :, 1]

        if mode in ['iou', 'giou']:
            union = area1.reshape([rows,1]) \
                    + area2.reshape([1,cols]) - overlap
        else:
            union = area1[:, None]
        if mode == 'giou':
            enclosed_lt = paddle.minimum(bboxes1[:, :2].reshape([rows, 1, 2]),
                                         bboxes2[:, :2])
            enclosed_rb = paddle.maximum(bboxes1[:, 2:].reshape([rows, 1, 2]),
                                         bboxes2[:, 2:])

    eps = paddle.to_tensor([eps])
    union = paddle.maximum(union, eps)
    ious = overlap / union
    if mode in ['iou', 'iof']:
        return ious
    # calculate gious
    enclose_wh = (enclosed_rb - enclosed_lt).clip(min=0)
    enclose_area = enclose_wh[:, :, 0] * enclose_wh[:, :, 1]
    enclose_area = paddle.maximum(enclose_area, eps)
    gious = ious - (enclose_area - union) / enclose_area
    return 1 - gious


def xywh2xyxy(box):
    x, y, w, h = box
    x1 = x - w * 0.5
    y1 = y - h * 0.5
    x2 = x + w * 0.5
    y2 = y + h * 0.5
    return [x1, y1, x2, y2]


def make_grid(h, w, dtype):
    yv, xv = paddle.meshgrid([paddle.arange(h), paddle.arange(w)])
    return paddle.stack((xv, yv), 2).cast(dtype=dtype)


def decode_yolo(box, anchor, downsample_ratio):
    """decode yolo box

    Args:
        box (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
        anchor (list): anchor with the shape [na, 2]
        downsample_ratio (int): downsample ratio, default 32
        scale (float): scale, default 1.

    Return:
        box (list): decoded box, [x, y, w, h], all have the shape [b, na, h, w, 1]
    """
    x, y, w, h = box
    na, grid_h, grid_w = x.shape[1:4]
    grid = make_grid(grid_h, grid_w, x.dtype).reshape((1, 1, grid_h, grid_w, 2))
    x1 = (x + grid[:, :, :, :, 0:1]) / grid_w
    y1 = (y + grid[:, :, :, :, 1:2]) / grid_h

    anchor = paddle.to_tensor(anchor, dtype=x.dtype)
    anchor = anchor.reshape((1, na, 1, 1, 2))
    w1 = paddle.exp(w) * anchor[:, :, :, :, 0:1] / (downsample_ratio * grid_w)
    h1 = paddle.exp(h) * anchor[:, :, :, :, 1:2] / (downsample_ratio * grid_h)

    return [x1, y1, w1, h1]


def batch_iou_similarity(box1, box2, eps=1e-9):
    """Calculate iou of box1 and box2 in batch

    Args:
        box1 (Tensor): box with the shape [N, M1, 4]
        box2 (Tensor): box with the shape [N, M2, 4]

    Return:
        iou (Tensor): iou between box1 and box2 with the shape [N, M1, M2]
    """
    box1 = box1.unsqueeze(2)  # [N, M1, 4] -> [N, M1, 1, 4]
    box2 = box2.unsqueeze(1)  # [N, M2, 4] -> [N, 1, M2, 4]
    px1y1, px2y2 = box1[:, :, :, 0:2], box1[:, :, :, 2:4]
    gx1y1, gx2y2 = box2[:, :, :, 0:2], box2[:, :, :, 2:4]
    x1y1 = paddle.maximum(px1y1, gx1y1)
    x2y2 = paddle.minimum(px2y2, gx2y2)
    overlap = (x2y2 - x1y1).clip(0).prod(-1)
    area1 = (px2y2 - px1y1).clip(0).prod(-1)
    area2 = (gx2y2 - gx1y1).clip(0).prod(-1)
    union = area1 + area2 - overlap + eps
    return overlap / union


def bbox_iou(box1,
             box2,
             x1y1x2y2=True,
             giou=False,
             diou=False,
             ciou=False,
             eps=1e-9):
    """calculate the iou of box1 and box2

    Args:
        box1 (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
        box2 (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
        giou (bool): whether use giou or not, default False
        diou (bool): whether use diou or not, default False
        ciou (bool): whether use ciou or not, default False
        eps (float): epsilon to avoid divide by zero

    Return:
        iou (Tensor): iou of box1 and box1, with the shape [b, na, h, w, 1]
    """
    if x1y1x2y2:
        px1, py1, px2, py2 = box1
        gx1, gy1, gx2, gy2 = box2
    else:  # transform from xywh to xyxy
        px1, px2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
        py1, py2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
        gx1, gx2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
        gy1, gy2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2

    x1 = paddle.maximum(px1, gx1)
    y1 = paddle.maximum(py1, gy1)
    x2 = paddle.minimum(px2, gx2)
    y2 = paddle.minimum(py2, gy2)

    overlap = ((x2 - x1).clip(0)) * ((y2 - y1).clip(0))

    area1 = (px2 - px1) * (py2 - py1)
    area1 = area1.clip(0)

    area2 = (gx2 - gx1) * (gy2 - gy1)
    area2 = area2.clip(0)

    union = area1 + area2 - overlap + eps
    iou = overlap / union

    if giou or ciou or diou:
        # convex w, h
        cw = paddle.maximum(px2, gx2) - paddle.minimum(px1, gx1)
        ch = paddle.maximum(py2, gy2) - paddle.minimum(py1, gy1)
        if giou:
            c_area = cw * ch + eps
            return iou - (c_area - union) / c_area
        else:
            # convex diagonal squared
            c2 = cw**2 + ch**2 + eps
            # center distance
            rho2 = ((px1 + px2 - gx1 - gx2)**2 + (py1 + py2 - gy1 - gy2)**2) / 4
            if diou:
                return iou - rho2 / c2
            else:
                w1, h1 = px2 - px1, py2 - py1 + eps
                w2, h2 = gx2 - gx1, gy2 - gy1 + eps
                delta = paddle.atan(w1 / h1) - paddle.atan(w2 / h2)
                v = (4 / math.pi**2) * paddle.pow(delta, 2)
                alpha = v / (1 + eps - iou + v)
                alpha.stop_gradient = True
                return iou - (rho2 / c2 + v * alpha)
    else:
        return iou


def bbox_iou_np_expand(box1, box2, x1y1x2y2=True, eps=1e-16):
    """
    Calculate the iou of box1 and box2 with numpy.

    Args:
        box1 (ndarray): [N, 4]
        box2 (ndarray): [M, 4], usually N != M
        x1y1x2y2 (bool): whether in x1y1x2y2 stype, default True
        eps (float): epsilon to avoid divide by zero
    Return:
        iou (ndarray): iou of box1 and box2, [N, M]
    """
    N, M = len(box1), len(box2)  # usually N != M
    if x1y1x2y2:
        b1_x1, b1_y1 = box1[:, 0], box1[:, 1]
        b1_x2, b1_y2 = box1[:, 2], box1[:, 3]
        b2_x1, b2_y1 = box2[:, 0], box2[:, 1]
        b2_x2, b2_y2 = box2[:, 2], box2[:, 3]
    else:
        # cxcywh style
        # Transform from center and width to exact coordinates
        b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
        b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
        b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
        b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2

    # get the coordinates of the intersection rectangle
    inter_rect_x1 = np.zeros((N, M), dtype=np.float32)
    inter_rect_y1 = np.zeros((N, M), dtype=np.float32)
    inter_rect_x2 = np.zeros((N, M), dtype=np.float32)
    inter_rect_y2 = np.zeros((N, M), dtype=np.float32)
    for i in range(len(box2)):
        inter_rect_x1[:, i] = np.maximum(b1_x1, b2_x1[i])
        inter_rect_y1[:, i] = np.maximum(b1_y1, b2_y1[i])
        inter_rect_x2[:, i] = np.minimum(b1_x2, b2_x2[i])
        inter_rect_y2[:, i] = np.minimum(b1_y2, b2_y2[i])
    # Intersection area
    inter_area = np.maximum(inter_rect_x2 - inter_rect_x1, 0) * np.maximum(
        inter_rect_y2 - inter_rect_y1, 0)
    # Union Area
    b1_area = np.repeat(
        ((b1_x2 - b1_x1) * (b1_y2 - b1_y1)).reshape(-1, 1), M, axis=-1)
    b2_area = np.repeat(
        ((b2_x2 - b2_x1) * (b2_y2 - b2_y1)).reshape(1, -1), N, axis=0)

    ious = inter_area / (b1_area + b2_area - inter_area + eps)
    return ious


def bbox2distance(points, bbox, max_dis=None, eps=0.1):
    """Decode bounding box based on distances.
    Args:
        points (Tensor): Shape (n, 2), [x, y].
        bbox (Tensor): Shape (n, 4), "xyxy" format
        max_dis (float): Upper bound of the distance.
        eps (float): a small value to ensure target < max_dis, instead <=
    Returns:
        Tensor: Decoded distances.
    """
    left = points[:, 0] - bbox[:, 0]
    top = points[:, 1] - bbox[:, 1]
    right = bbox[:, 2] - points[:, 0]
    bottom = bbox[:, 3] - points[:, 1]
    if max_dis is not None:
        left = left.clip(min=0, max=max_dis - eps)
        top = top.clip(min=0, max=max_dis - eps)
        right = right.clip(min=0, max=max_dis - eps)
        bottom = bottom.clip(min=0, max=max_dis - eps)
    return paddle.stack([left, top, right, bottom], -1)


def distance2bbox(points, distance, max_shape=None):
    """Decode distance prediction to bounding box.
        Args:
            points (Tensor): Shape (n, 2), [x, y].
            distance (Tensor): Distance from the given point to 4
                boundaries (left, top, right, bottom).
            max_shape (tuple): Shape of the image.
        Returns:
            Tensor: Decoded bboxes.
        """
    x1 = points[:, 0] - distance[:, 0]
    y1 = points[:, 1] - distance[:, 1]
    x2 = points[:, 0] + distance[:, 2]
    y2 = points[:, 1] + distance[:, 3]
    if max_shape is not None:
        x1 = x1.clip(min=0, max=max_shape[1])
        y1 = y1.clip(min=0, max=max_shape[0])
        x2 = x2.clip(min=0, max=max_shape[1])
        y2 = y2.clip(min=0, max=max_shape[0])
    return paddle.stack([x1, y1, x2, y2], -1)


def bbox_center(boxes):
    """Get bbox centers from boxes.
    Args:
        boxes (Tensor): boxes with shape (..., 4), "xmin, ymin, xmax, ymax" format.
    Returns:
        Tensor: boxes centers with shape (..., 2), "cx, cy" format.
    """
    boxes_cx = (boxes[..., 0] + boxes[..., 2]) / 2
    boxes_cy = (boxes[..., 1] + boxes[..., 3]) / 2
    return paddle.stack([boxes_cx, boxes_cy], axis=-1)


def batch_distance2bbox(points, distance, max_shapes=None):
    """Decode distance prediction to bounding box for batch.
    Args:
        points (Tensor): [B, ..., 2], "xy" format
        distance (Tensor): [B, ..., 4], "ltrb" format
        max_shapes (Tensor): [B, 2], "h,w" format, Shape of the image.
    Returns:
        Tensor: Decoded bboxes, "x1y1x2y2" format.
    """
    lt, rb = paddle.split(distance, 2, -1)
    # while tensor add parameters, parameters should be better placed on the second place
    x1y1 = -lt + points
    x2y2 = rb + points
    out_bbox = paddle.concat([x1y1, x2y2], -1)
    if max_shapes is not None:
        max_shapes = max_shapes.flip(-1).tile([1, 2])
        delta_dim = out_bbox.ndim - max_shapes.ndim
        for _ in range(delta_dim):
            max_shapes.unsqueeze_(1)
        out_bbox = paddle.where(out_bbox < max_shapes, out_bbox, max_shapes)
        out_bbox = paddle.where(out_bbox > 0, out_bbox,
                                paddle.zeros_like(out_bbox))
    return out_bbox


def iou_similarity(box1, box2, eps=1e-10):
    """Calculate iou of box1 and box2

    Args:
        box1 (Tensor): box with the shape [M1, 4]
        box2 (Tensor): box with the shape [M2, 4]

    Return:
        iou (Tensor): iou between box1 and box2 with the shape [M1, M2]
    """
    box1 = box1.unsqueeze(1)  # [M1, 4] -> [M1, 1, 4]
    box2 = box2.unsqueeze(0)  # [M2, 4] -> [1, M2, 4]
    px1y1, px2y2 = box1[:, :, 0:2], box1[:, :, 2:4]
    gx1y1, gx2y2 = box2[:, :, 0:2], box2[:, :, 2:4]
    x1y1 = paddle.maximum(px1y1, gx1y1)
    x2y2 = paddle.minimum(px2y2, gx2y2)
    overlap = (x2y2 - x1y1).clip(0).prod(-1)
    area1 = (px2y2 - px1y1).clip(0).prod(-1)
    area2 = (gx2y2 - gx1y1).clip(0).prod(-1)
    union = area1 + area2 - overlap + eps
    return overlap / union