vit_mae.py 26.3 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
import math
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from paddle.nn.initializer import Constant, TruncatedNormal

from ppdet.modeling.shape_spec import ShapeSpec
from ppdet.core.workspace import register, serializable

from .transformer_utils import (zeros_, DropPath, Identity, window_partition,
                                window_unpartition)
from ..initializer import linear_init_

__all__ = ['VisionTransformer2D', 'SimpleFeaturePyramid']


class Mlp(nn.Layer):
    def __init__(self,
                 in_features,
                 hidden_features=None,
                 out_features=None,
                 act_layer='nn.GELU',
                 drop=0.,
                 lr_factor=1.0):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(
            in_features,
            hidden_features,
            weight_attr=ParamAttr(learning_rate=lr_factor),
            bias_attr=ParamAttr(learning_rate=lr_factor))
        self.act = eval(act_layer)()
        self.fc2 = nn.Linear(
            hidden_features,
            out_features,
            weight_attr=ParamAttr(learning_rate=lr_factor),
            bias_attr=ParamAttr(learning_rate=lr_factor))
        self.drop = nn.Dropout(drop)

        self._init_weights()

    def _init_weights(self):
        linear_init_(self.fc1)
        linear_init_(self.fc2)

    def forward(self, x):
        x = self.drop(self.act(self.fc1(x)))
        x = self.drop(self.fc2(x))
        return x


class Attention(nn.Layer):
    def __init__(self,
                 dim,
                 num_heads=8,
                 qkv_bias=False,
                 attn_bias=False,
                 attn_drop=0.,
                 proj_drop=0.,
                 use_rel_pos=False,
                 rel_pos_zero_init=True,
                 window_size=None,
                 input_size=None,
                 qk_scale=None,
                 lr_factor=1.0):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = qk_scale or self.head_dim**-0.5
        self.use_rel_pos = use_rel_pos
        self.input_size = input_size
        self.rel_pos_zero_init = rel_pos_zero_init
        self.window_size = window_size
        self.lr_factor = lr_factor

        self.qkv = nn.Linear(
            dim,
            dim * 3,
            weight_attr=ParamAttr(learning_rate=lr_factor),
            bias_attr=ParamAttr(learning_rate=lr_factor)
            if attn_bias else False)
        if qkv_bias:
            self.q_bias = self.create_parameter(
                shape=([dim]), default_initializer=zeros_)
            self.v_bias = self.create_parameter(
                shape=([dim]), default_initializer=zeros_)
        else:
            self.q_bias = None
            self.v_bias = None
        self.proj = nn.Linear(
            dim,
            dim,
            weight_attr=ParamAttr(learning_rate=lr_factor),
            bias_attr=ParamAttr(learning_rate=lr_factor))
        self.attn_drop = nn.Dropout(attn_drop)
        if window_size is None:
            self.window_size = self.input_size[0]

        self._init_weights()

    def _init_weights(self):
        linear_init_(self.qkv)
        linear_init_(self.proj)

        if self.use_rel_pos:
            self.rel_pos_h = self.create_parameter(
                [2 * self.window_size - 1, self.head_dim],
                attr=ParamAttr(learning_rate=self.lr_factor),
                default_initializer=Constant(value=0.))
            self.rel_pos_w = self.create_parameter(
                [2 * self.window_size - 1, self.head_dim],
                attr=ParamAttr(learning_rate=self.lr_factor),
                default_initializer=Constant(value=0.))

            if not self.rel_pos_zero_init:
                TruncatedNormal(self.rel_pos_h, std=0.02)
                TruncatedNormal(self.rel_pos_w, std=0.02)

    def get_rel_pos(self, seq_size, rel_pos):
        max_rel_dist = int(2 * seq_size - 1)
        # Interpolate rel pos if needed.
        if rel_pos.shape[0] != max_rel_dist:
            # Interpolate rel pos.
            rel_pos = rel_pos.reshape([1, rel_pos.shape[0], -1])
            rel_pos = rel_pos.transpose([0, 2, 1])
            rel_pos_resized = F.interpolate(
                rel_pos,
                size=(max_rel_dist, ),
                mode="linear",
                data_format='NCW')
            rel_pos_resized = rel_pos_resized.reshape([-1, max_rel_dist])
            rel_pos_resized = rel_pos_resized.transpose([1, 0])
        else:
            rel_pos_resized = rel_pos

        coords = paddle.arange(seq_size, dtype='float32')
        relative_coords = coords.unsqueeze(-1) - coords.unsqueeze(0)
        relative_coords += (seq_size - 1)
        relative_coords = relative_coords.astype('int64').flatten()

        return paddle.index_select(rel_pos_resized, relative_coords).reshape(
            [seq_size, seq_size, self.head_dim])

    def add_decomposed_rel_pos(self, attn, q, h, w):
        """
        Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
        Args:
            attn (Tensor): attention map.
            q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
        Returns:
            attn (Tensor): attention map with added relative positional embeddings.
        """
        Rh = self.get_rel_pos(h, self.rel_pos_h)
        Rw = self.get_rel_pos(w, self.rel_pos_w)

        B, _, dim = q.shape
        r_q = q.reshape([B, h, w, dim])
        # bhwc, hch->bhwh1
        # bwhc, wcw->bhw1w
        rel_h = paddle.einsum("bhwc,hkc->bhwk", r_q, Rh).unsqueeze(-1)
        rel_w = paddle.einsum("bhwc,wkc->bhwk", r_q, Rw).unsqueeze(-2)

        attn = attn.reshape([B, h, w, h, w]) + rel_h + rel_w
        return attn.reshape([B, h * w, h * w])

    def forward(self, x):
        B, H, W, C = paddle.shape(x)

        if self.q_bias is not None:
            qkv_bias = paddle.concat(
                (self.q_bias, paddle.zeros_like(self.v_bias), self.v_bias))
            qkv = F.linear(x, weight=self.qkv.weight, bias=qkv_bias)
        else:
            qkv = self.qkv(x).reshape(
                [B, H * W, 3, self.num_heads, self.head_dim]).transpose(
                    [2, 0, 3, 1, 4]).reshape(
                        [3, B * self.num_heads, H * W, self.head_dim])

        q, k, v = qkv[0], qkv[1], qkv[2]
        attn = q.matmul(k.transpose([0, 2, 1])) * self.scale

        if self.use_rel_pos:
            attn = self.add_decomposed_rel_pos(attn, q, H, W)

        attn = F.softmax(attn, axis=-1)
        attn = self.attn_drop(attn)
        x = attn.matmul(v).reshape(
            [B, self.num_heads, H * W, self.head_dim]).transpose(
                [0, 2, 1, 3]).reshape([B, H, W, C])
        x = self.proj(x)
        return x


class Block(nn.Layer):
    def __init__(self,
                 dim,
                 num_heads,
                 mlp_ratio=4.,
                 qkv_bias=False,
                 attn_bias=False,
                 qk_scale=None,
                 init_values=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 use_rel_pos=True,
                 rel_pos_zero_init=True,
                 window_size=None,
                 input_size=None,
                 act_layer='nn.GELU',
                 norm_layer='nn.LayerNorm',
                 lr_factor=1.0,
                 epsilon=1e-5):
        super().__init__()
        self.window_size = window_size

        self.norm1 = eval(norm_layer)(dim,
                                      weight_attr=ParamAttr(
                                          learning_rate=lr_factor,
                                          regularizer=L2Decay(0.0)),
                                      bias_attr=ParamAttr(
                                          learning_rate=lr_factor,
                                          regularizer=L2Decay(0.0)),
                                      epsilon=epsilon)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_bias=attn_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop,
            use_rel_pos=use_rel_pos,
            rel_pos_zero_init=rel_pos_zero_init,
            window_size=window_size,
            input_size=input_size,
            lr_factor=lr_factor)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
        self.norm2 = eval(norm_layer)(dim,
                                      weight_attr=ParamAttr(
                                          learning_rate=lr_factor,
                                          regularizer=L2Decay(0.0)),
                                      bias_attr=ParamAttr(
                                          learning_rate=lr_factor,
                                          regularizer=L2Decay(0.0)),
                                      epsilon=epsilon)
        self.mlp = Mlp(in_features=dim,
                       hidden_features=int(dim * mlp_ratio),
                       act_layer=act_layer,
                       drop=drop,
                       lr_factor=lr_factor)
        if init_values is not None:
            self.gamma_1 = self.create_parameter(
                shape=([dim]), default_initializer=Constant(value=init_values))
            self.gamma_2 = self.create_parameter(
                shape=([dim]), default_initializer=Constant(value=init_values))
        else:
            self.gamma_1, self.gamma_2 = None, None

    def forward(self, x):
        y = self.norm1(x)
        if self.window_size is not None:
            y, pad_hw, num_hw = window_partition(y, self.window_size)
        y = self.attn(y)
        if self.gamma_1 is not None:
            y = self.gamma_1 * y

        if self.window_size is not None:
            y = window_unpartition(y, pad_hw, num_hw, (x.shape[1], x.shape[2]))
        x = x + self.drop_path(y)
        if self.gamma_2 is None:
            x = x + self.drop_path(self.mlp(self.norm2(x)))
        else:
            x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))

        return x


class PatchEmbed(nn.Layer):
    """ Image to Patch Embedding
    """

    def __init__(self,
                 img_size=(224, 224),
                 patch_size=16,
                 in_chans=3,
                 embed_dim=768,
                 lr_factor=0.01):
        super().__init__()
        self.img_size = img_size
        self.patch_size = patch_size
        self.proj = nn.Conv2D(
            in_chans,
            embed_dim,
            kernel_size=patch_size,
            stride=patch_size,
            weight_attr=ParamAttr(learning_rate=lr_factor),
            bias_attr=ParamAttr(learning_rate=lr_factor))

    @property
    def num_patches_in_h(self):
        return self.img_size[1] // self.patch_size

    @property
    def num_patches_in_w(self):
        return self.img_size[0] // self.patch_size

    def forward(self, x):
        out = self.proj(x)
        return out


@register
@serializable
class VisionTransformer2D(nn.Layer):
    """ Vision Transformer with support for patch input
    """

    def __init__(self,
                 img_size=(1024, 1024),
                 patch_size=16,
                 in_chans=3,
                 embed_dim=768,
                 depth=12,
                 num_heads=12,
                 mlp_ratio=4,
                 qkv_bias=False,
                 attn_bias=False,
                 qk_scale=None,
                 init_values=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 act_layer='nn.GELU',
                 norm_layer='nn.LayerNorm',
                 lr_decay_rate=1.0,
                 global_attn_indexes=(2, 5, 8, 11),
                 use_abs_pos=False,
                 use_rel_pos=False,
                 use_abs_pos_emb=False,
                 use_sincos_pos_emb=False,
                 rel_pos_zero_init=True,
                 epsilon=1e-5,
                 final_norm=False,
                 pretrained=None,
                 window_size=None,
                 out_indices=(11, ),
                 with_fpn=False,
                 use_checkpoint=False,
                 *args,
                 **kwargs):
        super().__init__()
        self.img_size = img_size
        self.patch_size = patch_size
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.depth = depth
        self.global_attn_indexes = global_attn_indexes
        self.epsilon = epsilon
        self.with_fpn = with_fpn
        self.use_checkpoint = use_checkpoint

        self.patch_h = img_size[0] // patch_size
        self.patch_w = img_size[1] // patch_size
        self.num_patches = self.patch_h * self.patch_w
        self.use_abs_pos = use_abs_pos
        self.use_abs_pos_emb = use_abs_pos_emb

        self.patch_embed = PatchEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim)

        dpr = np.linspace(0, drop_path_rate, depth)
        if use_checkpoint:
            paddle.seed(0)

        if use_abs_pos_emb:
            self.pos_w = self.patch_embed.num_patches_in_w
            self.pos_h = self.patch_embed.num_patches_in_h
            self.pos_embed = self.create_parameter(
                shape=(1, self.pos_w * self.pos_h + 1, embed_dim),
                default_initializer=paddle.nn.initializer.TruncatedNormal(
                    std=.02))
        elif use_sincos_pos_emb:
            pos_embed = self.get_2d_sincos_position_embedding(self.patch_h,
                                                              self.patch_w)

            self.pos_embed = pos_embed
            self.pos_embed = self.create_parameter(shape=pos_embed.shape)
            self.pos_embed.set_value(pos_embed.numpy())
            self.pos_embed.stop_gradient = True
        else:
            self.pos_embed = None

        self.blocks = nn.LayerList([
            Block(
                embed_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                attn_bias=attn_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[i],
                use_rel_pos=use_rel_pos,
                rel_pos_zero_init=rel_pos_zero_init,
                window_size=None
                if i in self.global_attn_indexes else window_size,
                input_size=[self.patch_h, self.patch_w],
                act_layer=act_layer,
                lr_factor=self.get_vit_lr_decay_rate(i, lr_decay_rate),
                norm_layer=norm_layer,
                init_values=init_values,
                epsilon=epsilon) for i in range(depth)
        ])

        assert len(out_indices) <= 4, 'out_indices out of bound'
        self.out_indices = out_indices
        self.pretrained = pretrained
        self.init_weight()

        self.out_channels = [embed_dim for _ in range(len(out_indices))]
        self.out_strides = [4, 8, 16, 32][-len(out_indices):] if with_fpn else [
            patch_size for _ in range(len(out_indices))
        ]
        self.norm = Identity()
        if self.with_fpn:
            self.init_fpn(
                embed_dim=embed_dim,
                patch_size=patch_size,
                out_with_norm=final_norm)

    def get_vit_lr_decay_rate(self, layer_id, lr_decay_rate):
        return lr_decay_rate**(self.depth - layer_id)

    def init_weight(self):
        pretrained = self.pretrained
        if pretrained:
            if 'http' in pretrained:
                path = paddle.utils.download.get_weights_path_from_url(
                    pretrained)
            else:
                path = pretrained

            load_state_dict = paddle.load(path)
            model_state_dict = self.state_dict()
            pos_embed_name = "pos_embed"

            if pos_embed_name in load_state_dict.keys(
            ) and self.use_abs_pos_emb:
                load_pos_embed = paddle.to_tensor(
                    load_state_dict[pos_embed_name], dtype="float32")
                if self.pos_embed.shape != load_pos_embed.shape:
                    pos_size = int(math.sqrt(load_pos_embed.shape[1] - 1))
                    model_state_dict[pos_embed_name] = self.resize_pos_embed(
                        load_pos_embed, (pos_size, pos_size),
                        (self.pos_h, self.pos_w))

                    # self.set_state_dict(model_state_dict)
                    load_state_dict[pos_embed_name] = model_state_dict[
                        pos_embed_name]

                    print("Load pos_embed and resize it from {} to {} .".format(
                        load_pos_embed.shape, self.pos_embed.shape))

            self.set_state_dict(load_state_dict)
            print("Load load_state_dict....")

    def init_fpn(self, embed_dim=768, patch_size=16, out_with_norm=False):
        if patch_size == 16:
            self.fpn1 = nn.Sequential(
                nn.Conv2DTranspose(
                    embed_dim, embed_dim, kernel_size=2, stride=2),
                nn.BatchNorm2D(embed_dim),
                nn.GELU(),
                nn.Conv2DTranspose(
                    embed_dim, embed_dim, kernel_size=2, stride=2), )

            self.fpn2 = nn.Sequential(
                nn.Conv2DTranspose(
                    embed_dim, embed_dim, kernel_size=2, stride=2), )

            self.fpn3 = Identity()

            self.fpn4 = nn.MaxPool2D(kernel_size=2, stride=2)
        elif patch_size == 8:
            self.fpn1 = nn.Sequential(
                nn.Conv2DTranspose(
                    embed_dim, embed_dim, kernel_size=2, stride=2), )

            self.fpn2 = Identity()

            self.fpn3 = nn.Sequential(nn.MaxPool2D(kernel_size=2, stride=2), )

            self.fpn4 = nn.Sequential(nn.MaxPool2D(kernel_size=4, stride=4), )

        if not out_with_norm:
            self.norm = Identity()
        else:
            self.norm = nn.LayerNorm(embed_dim, epsilon=self.epsilon)

    def resize_pos_embed(self, pos_embed, old_hw, new_hw):
        """
        Resize pos_embed weight.
        Args:
            pos_embed (Tensor): the pos_embed weight
            old_hw (list[int]): the height and width of old pos_embed
            new_hw (list[int]): the height and width of new pos_embed
        Returns:
            Tensor: the resized pos_embed weight
        """
        cls_pos_embed = pos_embed[:, :1, :]
        pos_embed = pos_embed[:, 1:, :]

        pos_embed = pos_embed.transpose([0, 2, 1])
        pos_embed = pos_embed.reshape([1, -1, old_hw[0], old_hw[1]])
        pos_embed = F.interpolate(
            pos_embed, new_hw, mode='bicubic', align_corners=False)
        pos_embed = pos_embed.flatten(2).transpose([0, 2, 1])
        pos_embed = paddle.concat([cls_pos_embed, pos_embed], axis=1)

        return pos_embed

    def get_2d_sincos_position_embedding(self, h, w, temperature=10000.):
        grid_y, grid_x = paddle.meshgrid(
            paddle.arange(
                h, dtype=paddle.float32),
            paddle.arange(
                w, dtype=paddle.float32))
        assert self.embed_dim % 4 == 0, 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
        pos_dim = self.embed_dim // 4
        omega = paddle.arange(pos_dim, dtype=paddle.float32) / pos_dim
        omega = (1. / (temperature**omega)).unsqueeze(0)

        out_x = grid_x.reshape([-1, 1]).matmul(omega)
        out_y = grid_y.reshape([-1, 1]).matmul(omega)

        pos_emb = paddle.concat(
            [
                paddle.sin(out_y), paddle.cos(out_y), paddle.sin(out_x),
                paddle.cos(out_x)
            ],
            axis=1)

        return pos_emb.reshape([1, h, w, self.embed_dim])

    def forward(self, inputs):
        x = self.patch_embed(inputs['image']).transpose([0, 2, 3, 1])
        B, Hp, Wp, _ = paddle.shape(x)

        if self.use_abs_pos:
            x = x + self.get_2d_sincos_position_embedding(Hp, Wp)

        if self.use_abs_pos_emb:
            x = x + self.resize_pos_embed(self.pos_embed,
                                          (self.pos_h, self.pos_w), (Hp, Wp))

        feats = []
        for idx, blk in enumerate(self.blocks):
            if self.use_checkpoint and self.training:
                x = paddle.distributed.fleet.utils.recompute(
                    blk, x, **{"preserve_rng_state": True})
            else:
                x = blk(x)
            if idx in self.out_indices:
                feats.append(self.norm(x.transpose([0, 3, 1, 2])))

        if self.with_fpn:
            fpns = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
            for i in range(len(feats)):
                feats[i] = fpns[i](feats[i])
        return feats

    @property
    def num_layers(self):
        return len(self.blocks)

    @property
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    @property
    def out_shape(self):
        return [
            ShapeSpec(
                channels=c, stride=s)
            for c, s in zip(self.out_channels, self.out_strides)
        ]


class LayerNorm(nn.Layer):
    """
    A LayerNorm variant, popularized by Transformers, that performs point-wise mean and
    variance normalization over the channel dimension for inputs that have shape
    (batch_size, channels, height, width).    
    Note that, the modified LayerNorm on used in ResBlock and SimpleFeaturePyramid.

    In ViT, we use the nn.LayerNorm
    """

    def __init__(self, normalized_shape, eps=1e-6):
        super().__init__()
        self.weight = self.create_parameter([normalized_shape])
        self.bias = self.create_parameter([normalized_shape])
        self.eps = eps
        self.normalized_shape = (normalized_shape, )

    def forward(self, x):
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / paddle.sqrt(s + self.eps)
        x = self.weight[:, None, None] * x + self.bias[:, None, None]
        return x


@register
@serializable
class SimpleFeaturePyramid(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 spatial_scales,
                 num_levels=4,
                 use_bias=False):
        """
        Args:
            in_channels (list[int]): input channels of each level which can be 
                derived from the output shape of backbone by from_config
            out_channel (int): output channel of each level.
            spatial_scales (list[float]): list of scaling factors to upsample or downsample
                the input features for creating pyramid features which can be derived from 
                the output shape of backbone by from_config
            num_levels (int): number of levels of output features.
            use_bias (bool): whether use bias or not.
        """
        super(SimpleFeaturePyramid, self).__init__()

        self.in_channels = in_channels[0]
        self.out_channels = out_channels
        self.num_levels = num_levels

        self.stages = []
        dim = self.in_channels
        if num_levels == 4:
            scale_factors = [2.0, 1.0, 0.5]
        elif num_levels == 5:
            scale_factors = [4.0, 2.0, 1.0, 0.5]
        else:
            raise NotImplementedError(
                f"num_levels={num_levels} is not supported yet.")

        dim = in_channels[0]
        for idx, scale in enumerate(scale_factors):
            out_dim = dim
            if scale == 4.0:
                layers = [
                    nn.Conv2DTranspose(
                        dim, dim // 2, kernel_size=2, stride=2),
                    nn.LayerNorm(dim // 2),
                    nn.GELU(),
                    nn.Conv2DTranspose(
                        dim // 2, dim // 4, kernel_size=2, stride=2),
                ]
                out_dim = dim // 4
            elif scale == 2.0:
                layers = [
                    nn.Conv2DTranspose(
                        dim, dim // 2, kernel_size=2, stride=2)
                ]
                out_dim = dim // 2
            elif scale == 1.0:
                layers = []
            elif scale == 0.5:
                layers = [nn.MaxPool2D(kernel_size=2, stride=2)]

            layers.extend([
                nn.Conv2D(
                    out_dim,
                    out_channels,
                    kernel_size=1,
                    bias_attr=use_bias, ), LayerNorm(out_channels), nn.Conv2D(
                        out_channels,
                        out_channels,
                        kernel_size=3,
                        padding=1,
                        bias_attr=use_bias, ), LayerNorm(out_channels)
            ])
            layers = nn.Sequential(*layers)

            stage = -int(math.log2(spatial_scales[0] * scale_factors[idx]))
            self.add_sublayer(f"simfp_{stage}", layers)
            self.stages.append(layers)

        # top block output feature maps.
        self.top_block = nn.Sequential(
            nn.MaxPool2D(
                kernel_size=1, stride=2, padding=0))

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {
            'in_channels': [i.channels for i in input_shape],
            'spatial_scales': [1.0 / i.stride for i in input_shape],
        }

    @property
    def out_shape(self):
        return [
            ShapeSpec(channels=self.out_channels)
            for _ in range(self.num_levels)
        ]

    def forward(self, feats):
        """
        Args:
            x: Tensor of shape (N,C,H,W).
        """
        features = feats[0]
        results = []

        for stage in self.stages:
            results.append(stage(features))

        top_block_in_feature = results[-1]
        results.append(self.top_block(top_block_in_feature))
        assert self.num_levels == len(results)

        return results