utils.py 9.46 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn.functional as F

__all__ = [
    'pad_gt', 'gather_topk_anchors', 'check_points_inside_bboxes',
    'compute_max_iou_anchor', 'compute_max_iou_gt',
    'generate_anchors_for_grid_cell'
]


def pad_gt(gt_labels, gt_bboxes, gt_scores=None):
    r""" Pad 0 in gt_labels and gt_bboxes.
    Args:
        gt_labels (Tensor|List[Tensor], int64): Label of gt_bboxes,
            shape is [B, n, 1] or [[n_1, 1], [n_2, 1], ...], here n = sum(n_i)
        gt_bboxes (Tensor|List[Tensor], float32): Ground truth bboxes,
            shape is [B, n, 4] or [[n_1, 4], [n_2, 4], ...], here n = sum(n_i)
        gt_scores (Tensor|List[Tensor]|None, float32): Score of gt_bboxes,
            shape is [B, n, 1] or [[n_1, 4], [n_2, 4], ...], here n = sum(n_i)
    Returns:
        pad_gt_labels (Tensor, int64): shape[B, n, 1]
        pad_gt_bboxes (Tensor, float32): shape[B, n, 4]
        pad_gt_scores (Tensor, float32): shape[B, n, 1]
        pad_gt_mask (Tensor, float32): shape[B, n, 1], 1 means bbox, 0 means no bbox
    """
    if isinstance(gt_labels, paddle.Tensor) and isinstance(gt_bboxes,
                                                           paddle.Tensor):
        assert gt_labels.ndim == gt_bboxes.ndim and \
               gt_bboxes.ndim == 3
        pad_gt_mask = (
            gt_bboxes.sum(axis=-1, keepdim=True) > 0).astype(gt_bboxes.dtype)
        if gt_scores is None:
            gt_scores = pad_gt_mask.clone()
        assert gt_labels.ndim == gt_scores.ndim

        return gt_labels, gt_bboxes, gt_scores, pad_gt_mask
    elif isinstance(gt_labels, list) and isinstance(gt_bboxes, list):
        assert len(gt_labels) == len(gt_bboxes), \
            'The number of `gt_labels` and `gt_bboxes` is not equal. '
        num_max_boxes = max([len(a) for a in gt_bboxes])
        batch_size = len(gt_bboxes)
        # pad label and bbox
        pad_gt_labels = paddle.zeros(
            [batch_size, num_max_boxes, 1], dtype=gt_labels[0].dtype)
        pad_gt_bboxes = paddle.zeros(
            [batch_size, num_max_boxes, 4], dtype=gt_bboxes[0].dtype)
        pad_gt_scores = paddle.zeros(
            [batch_size, num_max_boxes, 1], dtype=gt_bboxes[0].dtype)
        pad_gt_mask = paddle.zeros(
            [batch_size, num_max_boxes, 1], dtype=gt_bboxes[0].dtype)
        for i, (label, bbox) in enumerate(zip(gt_labels, gt_bboxes)):
            if len(label) > 0 and len(bbox) > 0:
                pad_gt_labels[i, :len(label)] = label
                pad_gt_bboxes[i, :len(bbox)] = bbox
                pad_gt_mask[i, :len(bbox)] = 1.
                if gt_scores is not None:
                    pad_gt_scores[i, :len(gt_scores[i])] = gt_scores[i]
        if gt_scores is None:
            pad_gt_scores = pad_gt_mask.clone()
        return pad_gt_labels, pad_gt_bboxes, pad_gt_scores, pad_gt_mask
    else:
        raise ValueError('The input `gt_labels` or `gt_bboxes` is invalid! ')


def gather_topk_anchors(metrics, topk, largest=True, topk_mask=None, eps=1e-9):
    r"""
    Args:
        metrics (Tensor, float32): shape[B, n, L], n: num_gts, L: num_anchors
        topk (int): The number of top elements to look for along the axis.
        largest (bool) : largest is a flag, if set to true,
            algorithm will sort by descending order, otherwise sort by
            ascending order. Default: True
        topk_mask (Tensor, float32): shape[B, n, 1], ignore bbox mask,
            Default: None
        eps (float): Default: 1e-9
    Returns:
        is_in_topk (Tensor, float32): shape[B, n, L], value=1. means selected
    """
    num_anchors = metrics.shape[-1]
    topk_metrics, topk_idxs = paddle.topk(
        metrics, topk, axis=-1, largest=largest)
    if topk_mask is None:
        topk_mask = (
            topk_metrics.max(axis=-1, keepdim=True) > eps).astype(metrics.dtype)
    is_in_topk = F.one_hot(topk_idxs, num_anchors).sum(
        axis=-2).astype(metrics.dtype)
    return is_in_topk * topk_mask


def check_points_inside_bboxes(points,
                               bboxes,
                               center_radius_tensor=None,
                               eps=1e-9,
                               sm_use=False):
    r"""
    Args:
        points (Tensor, float32): shape[L, 2], "xy" format, L: num_anchors
        bboxes (Tensor, float32): shape[B, n, 4], "xmin, ymin, xmax, ymax" format
        center_radius_tensor (Tensor, float32): shape [L, 1]. Default: None.
        eps (float): Default: 1e-9
    Returns:
        is_in_bboxes (Tensor, float32): shape[B, n, L], value=1. means selected
    """
    points = points.unsqueeze([0, 1])
    x, y = points.chunk(2, axis=-1)
    xmin, ymin, xmax, ymax = bboxes.unsqueeze(2).chunk(4, axis=-1)
    # check whether `points` is in `bboxes`
    l = x - xmin
    t = y - ymin
    r = xmax - x
    b = ymax - y
    delta_ltrb = paddle.concat([l, t, r, b], axis=-1)
    is_in_bboxes = (delta_ltrb.min(axis=-1) > eps)
    if center_radius_tensor is not None:
        # check whether `points` is in `center_radius`
        center_radius_tensor = center_radius_tensor.unsqueeze([0, 1])
        cx = (xmin + xmax) * 0.5
        cy = (ymin + ymax) * 0.5
        l = x - (cx - center_radius_tensor)
        t = y - (cy - center_radius_tensor)
        r = (cx + center_radius_tensor) - x
        b = (cy + center_radius_tensor) - y
        delta_ltrb_c = paddle.concat([l, t, r, b], axis=-1)
        is_in_center = (delta_ltrb_c.min(axis=-1) > eps)
        if sm_use:
            return is_in_bboxes.astype(bboxes.dtype), is_in_center.astype(
                bboxes.dtype)
        else:
            return (paddle.logical_and(is_in_bboxes, is_in_center),
                    paddle.logical_or(is_in_bboxes, is_in_center))

    return is_in_bboxes.astype(bboxes.dtype)


def compute_max_iou_anchor(ious):
    r"""
    For each anchor, find the GT with the largest IOU.
    Args:
        ious (Tensor, float32): shape[B, n, L], n: num_gts, L: num_anchors
    Returns:
        is_max_iou (Tensor, float32): shape[B, n, L], value=1. means selected
    """
    num_max_boxes = ious.shape[-2]
    max_iou_index = ious.argmax(axis=-2)
    is_max_iou = F.one_hot(max_iou_index, num_max_boxes).transpose([0, 2, 1])
    return is_max_iou.astype(ious.dtype)


def compute_max_iou_gt(ious):
    r"""
    For each GT, find the anchor with the largest IOU.
    Args:
        ious (Tensor, float32): shape[B, n, L], n: num_gts, L: num_anchors
    Returns:
        is_max_iou (Tensor, float32): shape[B, n, L], value=1. means selected
    """
    num_anchors = ious.shape[-1]
    max_iou_index = ious.argmax(axis=-1)
    is_max_iou = F.one_hot(max_iou_index, num_anchors)
    return is_max_iou.astype(ious.dtype)


def generate_anchors_for_grid_cell(feats,
                                   fpn_strides,
                                   grid_cell_size=5.0,
                                   grid_cell_offset=0.5,
                                   dtype='float32'):
    r"""
    Like ATSS, generate anchors based on grid size.
    Args:
        feats (List[Tensor]): shape[s, (b, c, h, w)]
        fpn_strides (tuple|list): shape[s], stride for each scale feature
        grid_cell_size (float): anchor size
        grid_cell_offset (float): The range is between 0 and 1.
    Returns:
        anchors (Tensor): shape[l, 4], "xmin, ymin, xmax, ymax" format.
        anchor_points (Tensor): shape[l, 2], "x, y" format.
        num_anchors_list (List[int]): shape[s], contains [s_1, s_2, ...].
        stride_tensor (Tensor): shape[l, 1], contains the stride for each scale.
    """
    assert len(feats) == len(fpn_strides)
    anchors = []
    anchor_points = []
    num_anchors_list = []
    stride_tensor = []
    for feat, stride in zip(feats, fpn_strides):
        _, _, h, w = feat.shape
        cell_half_size = grid_cell_size * stride * 0.5
        shift_x = (paddle.arange(end=w) + grid_cell_offset) * stride
        shift_y = (paddle.arange(end=h) + grid_cell_offset) * stride
        shift_y, shift_x = paddle.meshgrid(shift_y, shift_x)
        anchor = paddle.stack(
            [
                shift_x - cell_half_size, shift_y - cell_half_size,
                shift_x + cell_half_size, shift_y + cell_half_size
            ],
            axis=-1).astype(dtype)
        anchor_point = paddle.stack([shift_x, shift_y], axis=-1).astype(dtype)

        anchors.append(anchor.reshape([-1, 4]))
        anchor_points.append(anchor_point.reshape([-1, 2]))
        num_anchors_list.append(len(anchors[-1]))
        stride_tensor.append(
            paddle.full(
                [num_anchors_list[-1], 1], stride, dtype=dtype))
    anchors = paddle.concat(anchors)
    anchors.stop_gradient = True
    anchor_points = paddle.concat(anchor_points)
    anchor_points.stop_gradient = True
    stride_tensor = paddle.concat(stride_tensor)
    stride_tensor.stop_gradient = True
    return anchors, anchor_points, num_anchors_list, stride_tensor