"rust/vscode:/vscode.git/clone" did not exist on "4b0a1c9365efbbe1890858d2c8ad86046aaa3e7b"
task_aligned_assigner.py 8.13 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from ppdet.core.workspace import register
from ..bbox_utils import batch_iou_similarity
from .utils import (gather_topk_anchors, check_points_inside_bboxes,
                    compute_max_iou_anchor)

__all__ = ['TaskAlignedAssigner']


def is_close_gt(anchor, gt, stride_lst, max_dist=2.0, alpha=2.):
    """Calculate distance ratio of box1 and box2 in batch for larger stride
        anchors dist/stride to promote the survive of large distance match
    Args:
        anchor (Tensor): box with the shape [L, 2]
        gt (Tensor): box with the shape [N, M2, 4]
    Return:
        dist (Tensor): dist ratio between box1 and box2 with the shape [N, M1, M2]
    """
    center1 = anchor.unsqueeze(0)
    center2 = (gt[..., :2] + gt[..., -2:]) / 2.
    center1 = center1.unsqueeze(1)  # [N, M1, 2] -> [N, 1, M1, 2]
    center2 = center2.unsqueeze(2)  # [N, M2, 2] -> [N, M2, 1, 2]

    stride = paddle.concat([
        paddle.full([x], 32 / pow(2, idx)) for idx, x in enumerate(stride_lst)
    ]).unsqueeze(0).unsqueeze(0)
    dist = paddle.linalg.norm(center1 - center2, p=2, axis=-1) / stride
    dist_ratio = dist
    dist_ratio[dist < max_dist] = 1.
    dist_ratio[dist >= max_dist] = 0.
    return dist_ratio


@register
class TaskAlignedAssigner(nn.Layer):
    """TOOD: Task-aligned One-stage Object Detection
    """

    def __init__(self,
                 topk=13,
                 alpha=1.0,
                 beta=6.0,
                 eps=1e-9,
                 is_close_gt=False):
        super(TaskAlignedAssigner, self).__init__()
        self.topk = topk
        self.alpha = alpha
        self.beta = beta
        self.eps = eps
        self.is_close_gt = is_close_gt

    @paddle.no_grad()
    def forward(self,
                pred_scores,
                pred_bboxes,
                anchor_points,
                num_anchors_list,
                gt_labels,
                gt_bboxes,
                pad_gt_mask,
                bg_index,
                gt_scores=None):
        r"""This code is based on
            https://github.com/fcjian/TOOD/blob/master/mmdet/core/bbox/assigners/task_aligned_assigner.py

        The assignment is done in following steps
        1. compute alignment metric between all bbox (bbox of all pyramid levels) and gt
        2. select top-k bbox as candidates for each gt
        3. limit the positive sample's center in gt (because the anchor-free detector
           only can predict positive distance)
        4. if an anchor box is assigned to multiple gts, the one with the
           highest iou will be selected.
        Args:
            pred_scores (Tensor, float32): predicted class probability, shape(B, L, C)
            pred_bboxes (Tensor, float32): predicted bounding boxes, shape(B, L, 4)
            anchor_points (Tensor, float32): pre-defined anchors, shape(L, 2), "cxcy" format
            num_anchors_list (List): num of anchors in each level, shape(L)
            gt_labels (Tensor, int64|int32): Label of gt_bboxes, shape(B, n, 1)
            gt_bboxes (Tensor, float32): Ground truth bboxes, shape(B, n, 4)
            pad_gt_mask (Tensor, float32): 1 means bbox, 0 means no bbox, shape(B, n, 1)
            bg_index (int): background index
            gt_scores (Tensor|None, float32) Score of gt_bboxes, shape(B, n, 1)
        Returns:
            assigned_labels (Tensor): (B, L)
            assigned_bboxes (Tensor): (B, L, 4)
            assigned_scores (Tensor): (B, L, C)
        """
        assert pred_scores.ndim == pred_bboxes.ndim
        assert gt_labels.ndim == gt_bboxes.ndim and \
               gt_bboxes.ndim == 3

        batch_size, num_anchors, num_classes = pred_scores.shape
        _, num_max_boxes, _ = gt_bboxes.shape

        # negative batch
        if num_max_boxes == 0:
            assigned_labels = paddle.full(
                [batch_size, num_anchors], bg_index, dtype='int32')
            assigned_bboxes = paddle.zeros([batch_size, num_anchors, 4])
            assigned_scores = paddle.zeros(
                [batch_size, num_anchors, num_classes])
            return assigned_labels, assigned_bboxes, assigned_scores

        # compute iou between gt and pred bbox, [B, n, L]
        ious = batch_iou_similarity(gt_bboxes, pred_bboxes)
        # gather pred bboxes class score
        pred_scores = pred_scores.transpose([0, 2, 1])
        batch_ind = paddle.arange(
            end=batch_size, dtype=gt_labels.dtype).unsqueeze(-1)
        gt_labels_ind = paddle.stack(
            [batch_ind.tile([1, num_max_boxes]), gt_labels.squeeze(-1)],
            axis=-1)
        bbox_cls_scores = paddle.gather_nd(pred_scores, gt_labels_ind)
        # compute alignment metrics, [B, n, L]
        alignment_metrics = bbox_cls_scores.pow(self.alpha) * ious.pow(
            self.beta)

        # check the positive sample's center in gt, [B, n, L]
        if self.is_close_gt:
            is_in_gts = is_close_gt(anchor_points, gt_bboxes, num_anchors_list)
        else:
            is_in_gts = check_points_inside_bboxes(anchor_points, gt_bboxes)

        # select topk largest alignment metrics pred bbox as candidates
        # for each gt, [B, n, L]
        is_in_topk = gather_topk_anchors(
            alignment_metrics * is_in_gts, self.topk, topk_mask=pad_gt_mask)

        # select positive sample, [B, n, L]
        mask_positive = is_in_topk * is_in_gts * pad_gt_mask

        # if an anchor box is assigned to multiple gts,
        # the one with the highest iou will be selected, [B, n, L]
        mask_positive_sum = mask_positive.sum(axis=-2)
        if mask_positive_sum.max() > 1:
            mask_multiple_gts = (mask_positive_sum.unsqueeze(1) > 1).tile(
                [1, num_max_boxes, 1])
            is_max_iou = compute_max_iou_anchor(ious)
            mask_positive = paddle.where(mask_multiple_gts, is_max_iou,
                                         mask_positive)
            mask_positive_sum = mask_positive.sum(axis=-2)
        assigned_gt_index = mask_positive.argmax(axis=-2)

        # assigned target
        assigned_gt_index = assigned_gt_index + batch_ind * num_max_boxes
        assigned_labels = paddle.gather(
            gt_labels.flatten(), assigned_gt_index.flatten(), axis=0)
        assigned_labels = assigned_labels.reshape([batch_size, num_anchors])
        assigned_labels = paddle.where(
            mask_positive_sum > 0, assigned_labels,
            paddle.full_like(assigned_labels, bg_index))

        assigned_bboxes = paddle.gather(
            gt_bboxes.reshape([-1, 4]), assigned_gt_index.flatten(), axis=0)
        assigned_bboxes = assigned_bboxes.reshape([batch_size, num_anchors, 4])

        assigned_scores = F.one_hot(assigned_labels, num_classes + 1)
        ind = list(range(num_classes + 1))
        ind.remove(bg_index)
        assigned_scores = paddle.index_select(
            assigned_scores, paddle.to_tensor(ind), axis=-1)
        # rescale alignment metrics
        alignment_metrics *= mask_positive
        max_metrics_per_instance = alignment_metrics.max(axis=-1, keepdim=True)
        max_ious_per_instance = (ious * mask_positive).max(axis=-1,
                                                           keepdim=True)
        alignment_metrics = alignment_metrics / (
            max_metrics_per_instance + self.eps) * max_ious_per_instance
        alignment_metrics = alignment_metrics.max(-2).unsqueeze(-1)
        assigned_scores = assigned_scores * alignment_metrics

        return assigned_labels, assigned_bboxes, assigned_scores