yolox.py 5.04 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from ppdet.core.workspace import register, create
from .meta_arch import BaseArch

import random
import paddle
import paddle.nn.functional as F

__all__ = ['YOLOX']


@register
class YOLOX(BaseArch):
    """
    YOLOX network, see https://arxiv.org/abs/2107.08430

    Args:
        backbone (nn.Layer): backbone instance
        neck (nn.Layer): neck instance
        head (nn.Layer): head instance
        for_mot (bool): whether used for MOT or not
        input_size (list[int]): initial scale, will be reset by self._preprocess()
        size_stride (int): stride of the size range
        size_range (list[int]): multi-scale range for training
        random_interval (int): interval of iter to change self._input_size
    """
    __category__ = 'architecture'

    def __init__(self,
                 backbone='CSPDarkNet',
                 neck='YOLOCSPPAN',
                 head='YOLOXHead',
                 for_mot=False,
                 input_size=[640, 640],
                 size_stride=32,
                 size_range=[15, 25],
                 random_interval=10):
        super(YOLOX, self).__init__()
        self.backbone = backbone
        self.neck = neck
        self.head = head
        self.for_mot = for_mot

        self.input_size = input_size
        self._input_size = paddle.to_tensor(input_size)
        self.size_stride = size_stride
        self.size_range = size_range
        self.random_interval = random_interval
        self._step = 0

    @classmethod
    def from_config(cls, cfg, *args, **kwargs):
        # backbone
        backbone = create(cfg['backbone'])

        # fpn
        kwargs = {'input_shape': backbone.out_shape}
        neck = create(cfg['neck'], **kwargs)

        # head
        kwargs = {'input_shape': neck.out_shape}
        head = create(cfg['head'], **kwargs)

        return {
            'backbone': backbone,
            'neck': neck,
            "head": head,
        }

    def _forward(self):
        if self.training:
            self._preprocess()
        body_feats = self.backbone(self.inputs)
        neck_feats = self.neck(body_feats, self.for_mot)

        if self.training:
            yolox_losses = self.head(neck_feats, self.inputs)
            yolox_losses.update({'size': self._input_size[0]})
            return yolox_losses
        else:
            head_outs = self.head(neck_feats)
            post_outs = self.head.post_process(
                head_outs, self.inputs['im_shape'], self.inputs['scale_factor'])

            if not isinstance(post_outs, (tuple, list)):
                # if set exclude_post_process, concat([pred_bboxes, pred_scores]) not scaled to origin
                # export onnx as torch yolo models
                return post_outs
            else:
                # if set exclude_nms, [pred_bboxes, pred_scores] scaled to origin
                bbox, bbox_num = post_outs  # default for end-to-end eval/infer
                return {'bbox': bbox, 'bbox_num': bbox_num}

    def get_loss(self):
        return self._forward()

    def get_pred(self):
        return self._forward()

    def _preprocess(self):
        # YOLOX multi-scale training, interpolate resize before inputs of the network.
        self._get_size()
        scale_y = self._input_size[0] / self.input_size[0]
        scale_x = self._input_size[1] / self.input_size[1]
        if scale_x != 1 or scale_y != 1:
            self.inputs['image'] = F.interpolate(
                self.inputs['image'],
                size=self._input_size,
                mode='bilinear',
                align_corners=False)
            gt_bboxes = self.inputs['gt_bbox']
            for i in range(len(gt_bboxes)):
                if len(gt_bboxes[i]) > 0:
                    gt_bboxes[i][:, 0::2] = gt_bboxes[i][:, 0::2] * scale_x
                    gt_bboxes[i][:, 1::2] = gt_bboxes[i][:, 1::2] * scale_y
            self.inputs['gt_bbox'] = gt_bboxes

    def _get_size(self):
        # random_interval = 10 as default, every 10 iters to change self._input_size
        image_ratio = self.input_size[1] * 1.0 / self.input_size[0]
        if self._step % self.random_interval == 0:
            size_factor = random.randint(*self.size_range)
            size = [
                self.size_stride * size_factor,
                self.size_stride * int(size_factor * image_ratio)
            ]
            self._input_size = paddle.to_tensor(size)
        self._step += 1