ppyoloe.py 8.83 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch

__all__ = ['PPYOLOE', 'PPYOLOEWithAuxHead']
# PP-YOLOE and PP-YOLOE+ are recommended to use this architecture, especially when use distillation or aux head
# PP-YOLOE and PP-YOLOE+ can also use the same architecture of YOLOv3 in yolo.py when not use distillation or aux head


@register
class PPYOLOE(BaseArch):
    """
    PPYOLOE network, see https://arxiv.org/abs/2203.16250

    Args:
        backbone (nn.Layer): backbone instance
        neck (nn.Layer): neck instance
        yolo_head (nn.Layer): anchor_head instance
        post_process (object): `BBoxPostProcess` instance
        ssod_loss (object): 'SSODPPYOLOELoss' instance, only used for semi-det(ssod)
        for_distill (bool): whether for distillation
        feat_distill_place (str): distill which feature for distillation
        for_mot (bool): whether return other features for multi-object tracking
            models, default False in pure object detection models.
    """

    __category__ = 'architecture'
    __shared__ = ['for_distill']
    __inject__ = ['post_process', 'ssod_loss']

    def __init__(self,
                 backbone='CSPResNet',
                 neck='CustomCSPPAN',
                 yolo_head='PPYOLOEHead',
                 post_process='BBoxPostProcess',
                 ssod_loss='SSODPPYOLOELoss',
                 for_distill=False,
                 feat_distill_place='neck_feats',
                 for_mot=False):
        super(PPYOLOE, self).__init__()
        self.backbone = backbone
        self.neck = neck
        self.yolo_head = yolo_head
        self.post_process = post_process
        self.for_mot = for_mot

        # for ssod, semi-det
        self.is_teacher = False
        self.ssod_loss = ssod_loss

        # distill
        self.for_distill = for_distill
        self.feat_distill_place = feat_distill_place
        if for_distill:
            assert feat_distill_place in ['backbone_feats', 'neck_feats']

    @classmethod
    def from_config(cls, cfg, *args, **kwargs):
        backbone = create(cfg['backbone'])

        kwargs = {'input_shape': backbone.out_shape}
        neck = create(cfg['neck'], **kwargs)

        kwargs = {'input_shape': neck.out_shape}
        yolo_head = create(cfg['yolo_head'], **kwargs)

        return {
            'backbone': backbone,
            'neck': neck,
            "yolo_head": yolo_head,
        }

    def _forward(self):
        body_feats = self.backbone(self.inputs)
        neck_feats = self.neck(body_feats, self.for_mot)

        self.is_teacher = self.inputs.get('is_teacher', False)  # for semi-det
        if self.training or self.is_teacher:
            yolo_losses = self.yolo_head(neck_feats, self.inputs)

            if self.for_distill:
                if self.feat_distill_place == 'backbone_feats':
                    self.yolo_head.distill_pairs['backbone_feats'] = body_feats
                elif self.feat_distill_place == 'neck_feats':
                    self.yolo_head.distill_pairs['neck_feats'] = neck_feats
                else:
                    raise ValueError
            return yolo_losses
        else:

            yolo_head_outs = self.yolo_head(neck_feats)

            if self.post_process is not None:
                bbox, bbox_num, nms_keep_idx = self.post_process(
                    yolo_head_outs, self.yolo_head.mask_anchors,
                    self.inputs['im_shape'], self.inputs['scale_factor'])

            else:
                bbox, bbox_num, nms_keep_idx = self.yolo_head.post_process(
                    yolo_head_outs, self.inputs['scale_factor'])

            if self.use_extra_data:
                extra_data = {}  # record the bbox output before nms, such like scores and nms_keep_idx
                """extra_data:{
                            'scores': predict scores,
                            'nms_keep_idx': bbox index before nms,
                           }
                           """
                extra_data['scores'] = yolo_head_outs[0]  # predict scores (probability)
                extra_data['nms_keep_idx'] = nms_keep_idx
                output = {'bbox': bbox, 'bbox_num': bbox_num, 'extra_data': extra_data}
            else:
                output = {'bbox': bbox, 'bbox_num': bbox_num}

            return output

    def get_loss(self):
        return self._forward()

    def get_pred(self):
        return self._forward()

    def get_loss_keys(self):
        return ['loss_cls', 'loss_iou', 'loss_dfl', 'loss_contrast']

    def get_ssod_loss(self, student_head_outs, teacher_head_outs, train_cfg):
        ssod_losses = self.ssod_loss(student_head_outs, teacher_head_outs,
                                     train_cfg)
        return ssod_losses


@register
class PPYOLOEWithAuxHead(BaseArch):
    __category__ = 'architecture'
    __inject__ = ['post_process']

    def __init__(self,
                 backbone='CSPResNet',
                 neck='CustomCSPPAN',
                 yolo_head='PPYOLOEHead',
                 aux_head='SimpleConvHead',
                 post_process='BBoxPostProcess',
                 for_mot=False,
                 detach_epoch=5):
        """
        PPYOLOE network, see https://arxiv.org/abs/2203.16250

        Args:
            backbone (nn.Layer): backbone instance
            neck (nn.Layer): neck instance
            yolo_head (nn.Layer): anchor_head instance
            post_process (object): `BBoxPostProcess` instance
            for_mot (bool): whether return other features for multi-object tracking
                models, default False in pure object detection models.
        """
        super(PPYOLOEWithAuxHead, self).__init__()
        self.backbone = backbone
        self.neck = neck
        self.aux_neck = copy.deepcopy(self.neck)

        self.yolo_head = yolo_head
        self.aux_head = aux_head
        self.post_process = post_process
        self.for_mot = for_mot
        self.detach_epoch = detach_epoch

    @classmethod
    def from_config(cls, cfg, *args, **kwargs):
        # backbone
        backbone = create(cfg['backbone'])

        # fpn
        kwargs = {'input_shape': backbone.out_shape}
        neck = create(cfg['neck'], **kwargs)
        aux_neck = copy.deepcopy(neck)

        # head
        kwargs = {'input_shape': neck.out_shape}
        yolo_head = create(cfg['yolo_head'], **kwargs)
        aux_head = create(cfg['aux_head'], **kwargs)

        return {
            'backbone': backbone,
            'neck': neck,
            "yolo_head": yolo_head,
            'aux_head': aux_head,
        }

    def _forward(self):
        body_feats = self.backbone(self.inputs)
        neck_feats = self.neck(body_feats, self.for_mot)

        if self.training:
            if self.inputs['epoch_id'] >= self.detach_epoch:
                aux_neck_feats = self.aux_neck([f.detach() for f in body_feats])
                dual_neck_feats = (paddle.concat(
                    [f.detach(), aux_f], axis=1) for f, aux_f in
                                   zip(neck_feats, aux_neck_feats))
            else:
                aux_neck_feats = self.aux_neck(body_feats)
                dual_neck_feats = (paddle.concat(
                    [f, aux_f], axis=1) for f, aux_f in
                                   zip(neck_feats, aux_neck_feats))
            aux_cls_scores, aux_bbox_preds = self.aux_head(dual_neck_feats)
            loss = self.yolo_head(
                neck_feats,
                self.inputs,
                aux_pred=[aux_cls_scores, aux_bbox_preds])
            return loss
        else:
            yolo_head_outs = self.yolo_head(neck_feats)
            if self.post_process is not None:
                bbox, bbox_num = self.post_process(
                    yolo_head_outs, self.yolo_head.mask_anchors,
                    self.inputs['im_shape'], self.inputs['scale_factor'])
            else:
                bbox, bbox_num = self.yolo_head.post_process(
                    yolo_head_outs, self.inputs['scale_factor'])
            output = {'bbox': bbox, 'bbox_num': bbox_num}

            return output

    def get_loss(self):
        return self._forward()

    def get_pred(self):
        return self._forward()