map_utils.py 11.2 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import os
import sys
import numpy as np
import itertools

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = [
    'draw_pr_curve',
    'bbox_area',
    'jaccard_overlap',
    'prune_zero_padding',
    'DetectionMAP',
]


def draw_pr_curve(precision,
                  recall,
                  iou=0.5,
                  out_dir='pr_curve',
                  file_name='precision_recall_curve.jpg'):
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)
    output_path = os.path.join(out_dir, file_name)
    try:
        import matplotlib.pyplot as plt
    except Exception as e:
        logger.error('Matplotlib not found, plaese install matplotlib.'
                     'for example: `pip install matplotlib`.')
        raise e
    plt.cla()
    plt.figure('P-R Curve')
    plt.title('Precision/Recall Curve(IoU={})'.format(iou))
    plt.xlabel('Recall')
    plt.ylabel('Precision')
    plt.grid(True)
    plt.plot(recall, precision)
    plt.savefig(output_path)


def bbox_area(bbox, is_bbox_normalized):
    """
    Calculate area of a bounding box
    """
    norm = 1. - float(is_bbox_normalized)
    width = bbox[2] - bbox[0] + norm
    height = bbox[3] - bbox[1] + norm
    return width * height


def jaccard_overlap(pred, gt, is_bbox_normalized=False):
    """
    Calculate jaccard overlap ratio between two bounding box
    """
    if pred[0] >= gt[2] or pred[2] <= gt[0] or \
        pred[1] >= gt[3] or pred[3] <= gt[1]:
        return 0.
    inter_xmin = max(pred[0], gt[0])
    inter_ymin = max(pred[1], gt[1])
    inter_xmax = min(pred[2], gt[2])
    inter_ymax = min(pred[3], gt[3])
    inter_size = bbox_area([inter_xmin, inter_ymin, inter_xmax, inter_ymax],
                           is_bbox_normalized)
    pred_size = bbox_area(pred, is_bbox_normalized)
    gt_size = bbox_area(gt, is_bbox_normalized)
    overlap = float(inter_size) / (pred_size + gt_size - inter_size)
    return overlap


def prune_zero_padding(gt_box, gt_label, difficult=None):
    valid_cnt = 0
    for i in range(len(gt_box)):
        if (gt_box[i] == 0).all():
            break
        valid_cnt += 1
    return (gt_box[:valid_cnt], gt_label[:valid_cnt], difficult[:valid_cnt]
            if difficult is not None else None)


class DetectionMAP(object):
    """
    Calculate detection mean average precision.
    Currently support two types: 11point and integral

    Args:
        class_num (int): The class number.
        overlap_thresh (float): The threshold of overlap
            ratio between prediction bounding box and 
            ground truth bounding box for deciding 
            true/false positive. Default 0.5.
        map_type (str): Calculation method of mean average
            precision, currently support '11point' and
            'integral'. Default '11point'.
        is_bbox_normalized (bool): Whether bounding boxes
            is normalized to range[0, 1]. Default False.
        evaluate_difficult (bool): Whether to evaluate
            difficult bounding boxes. Default False.
        catid2name (dict): Mapping between category id and category name.
        classwise (bool): Whether per-category AP and draw
            P-R Curve or not.
    """

    def __init__(self,
                 class_num,
                 overlap_thresh=0.5,
                 map_type='11point',
                 is_bbox_normalized=False,
                 evaluate_difficult=False,
                 catid2name=None,
                 classwise=False):
        self.class_num = class_num
        self.overlap_thresh = overlap_thresh
        assert map_type in ['11point', 'integral'], \
                "map_type currently only support '11point' "\
                "and 'integral'"
        self.map_type = map_type
        self.is_bbox_normalized = is_bbox_normalized
        self.evaluate_difficult = evaluate_difficult
        self.classwise = classwise
        self.classes = []
        for cname in catid2name.values():
            self.classes.append(cname)
        self.reset()

    def update(self, bbox, score, label, gt_box, gt_label, difficult=None):
        """
        Update metric statics from given prediction and ground
        truth infomations.
        """
        if difficult is None:
            difficult = np.zeros_like(gt_label)

        # record class gt count
        for gtl, diff in zip(gt_label, difficult):
            if self.evaluate_difficult or int(diff) == 0:
                self.class_gt_counts[int(np.array(gtl))] += 1

        # record class score positive
        visited = [False] * len(gt_label)
        for b, s, l in zip(bbox, score, label):
            pred = b.tolist() if isinstance(b, np.ndarray) else b
            max_idx = -1
            max_overlap = -1.0
            for i, gl in enumerate(gt_label):
                if int(gl) == int(l):
                    if len(gt_box[i]) == 8:
                        overlap = calc_rbox_iou(pred, gt_box[i])
                    else:
                        overlap = jaccard_overlap(pred, gt_box[i],
                                                  self.is_bbox_normalized)
                    if overlap > max_overlap:
                        max_overlap = overlap
                        max_idx = i

            if max_overlap > self.overlap_thresh:
                if self.evaluate_difficult or \
                        int(np.array(difficult[max_idx])) == 0:
                    if not visited[max_idx]:
                        self.class_score_poss[int(l)].append([s, 1.0])
                        visited[max_idx] = True
                    else:
                        self.class_score_poss[int(l)].append([s, 0.0])
            else:
                self.class_score_poss[int(l)].append([s, 0.0])

    def reset(self):
        """
        Reset metric statics
        """
        self.class_score_poss = [[] for _ in range(self.class_num)]
        self.class_gt_counts = [0] * self.class_num
        self.mAP = 0.0

    def accumulate(self):
        """
        Accumulate metric results and calculate mAP
        """
        mAP = 0.
        valid_cnt = 0
        eval_results = []
        for score_pos, count in zip(self.class_score_poss,
                                    self.class_gt_counts):
            if count == 0: continue
            if len(score_pos) == 0:
                valid_cnt += 1
                continue

            accum_tp_list, accum_fp_list = \
                    self._get_tp_fp_accum(score_pos)
            precision = []
            recall = []
            for ac_tp, ac_fp in zip(accum_tp_list, accum_fp_list):
                precision.append(float(ac_tp) / (ac_tp + ac_fp))
                recall.append(float(ac_tp) / count)

            one_class_ap = 0.0
            if self.map_type == '11point':
                max_precisions = [0.] * 11
                start_idx = len(precision) - 1
                for j in range(10, -1, -1):
                    for i in range(start_idx, -1, -1):
                        if recall[i] < float(j) / 10.:
                            start_idx = i
                            if j > 0:
                                max_precisions[j - 1] = max_precisions[j]
                                break
                        else:
                            if max_precisions[j] < precision[i]:
                                max_precisions[j] = precision[i]
                one_class_ap = sum(max_precisions) / 11.
                mAP += one_class_ap
                valid_cnt += 1
            elif self.map_type == 'integral':
                import math
                prev_recall = 0.
                for i in range(len(precision)):
                    recall_gap = math.fabs(recall[i] - prev_recall)
                    if recall_gap > 1e-6:
                        one_class_ap += precision[i] * recall_gap
                        prev_recall = recall[i]
                mAP += one_class_ap
                valid_cnt += 1
            else:
                logger.error("Unspported mAP type {}".format(self.map_type))
                sys.exit(1)
            eval_results.append({
                'class': self.classes[valid_cnt - 1],
                'ap': one_class_ap,
                'precision': precision,
                'recall': recall,
            })
        self.eval_results = eval_results
        self.mAP = mAP / float(valid_cnt) if valid_cnt > 0 else mAP

    def get_map(self):
        """
        Get mAP result
        """
        if self.mAP is None:
            logger.error("mAP is not calculated.")
        if self.classwise:
            # Compute per-category AP and PR curve
            try:
                from terminaltables import AsciiTable
            except Exception as e:
                logger.error(
                    'terminaltables not found, plaese install terminaltables. '
                    'for example: `pip install terminaltables`.')
                raise e
            results_per_category = []
            for eval_result in self.eval_results:
                results_per_category.append(
                    (str(eval_result['class']),
                     '{:0.3f}'.format(float(eval_result['ap']))))
                draw_pr_curve(
                    eval_result['precision'],
                    eval_result['recall'],
                    out_dir='voc_pr_curve',
                    file_name='{}_precision_recall_curve.jpg'.format(
                        eval_result['class']))

            num_columns = min(6, len(results_per_category) * 2)
            results_flatten = list(itertools.chain(*results_per_category))
            headers = ['category', 'AP'] * (num_columns // 2)
            results_2d = itertools.zip_longest(* [
                results_flatten[i::num_columns] for i in range(num_columns)
            ])
            table_data = [headers]
            table_data += [result for result in results_2d]
            table = AsciiTable(table_data)
            logger.info('Per-category of VOC AP: \n{}'.format(table.table))
            logger.info(
                "per-category PR curve has output to voc_pr_curve folder.")
        return self.mAP

    def _get_tp_fp_accum(self, score_pos_list):
        """
        Calculate accumulating true/false positive results from
        [score, pos] records
        """
        sorted_list = sorted(score_pos_list, key=lambda s: s[0], reverse=True)
        accum_tp = 0
        accum_fp = 0
        accum_tp_list = []
        accum_fp_list = []
        for (score, pos) in sorted_list:
            accum_tp += int(pos)
            accum_tp_list.append(accum_tp)
            accum_fp += 1 - int(pos)
            accum_fp_list.append(accum_fp)
        return accum_tp_list, accum_fp_list