json_results.py 5.16 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import six
import numpy as np


def get_det_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias=0):
    det_res = []
    k = 0
    for i in range(len(bbox_nums)):
        cur_image_id = int(image_id[i][0])
        det_nums = bbox_nums[i]
        for j in range(det_nums):
            dt = bboxes[k]
            k = k + 1
            num_id, score, xmin, ymin, xmax, ymax = dt.tolist()
            if int(num_id) < 0:
                continue
            category_id = label_to_cat_id_map[int(num_id)]
            w = xmax - xmin + bias
            h = ymax - ymin + bias
            bbox = [xmin, ymin, w, h]
            dt_res = {
                'image_id': cur_image_id,
                'category_id': category_id,
                'bbox': bbox,
                'score': score
            }
            det_res.append(dt_res)
    return det_res


def get_det_poly_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias=0):
    det_res = []
    k = 0
    for i in range(len(bbox_nums)):
        cur_image_id = int(image_id[i][0])
        det_nums = bbox_nums[i]
        for j in range(det_nums):
            dt = bboxes[k]
            k = k + 1
            num_id, score, x1, y1, x2, y2, x3, y3, x4, y4 = dt.tolist()
            if int(num_id) < 0:
                continue
            category_id = label_to_cat_id_map[int(num_id)]
            rbox = [x1, y1, x2, y2, x3, y3, x4, y4]
            dt_res = {
                'image_id': cur_image_id,
                'category_id': category_id,
                'bbox': rbox,
                'score': score
            }
            det_res.append(dt_res)
    return det_res


def strip_mask(mask):
    row = mask[0, 0, :]
    col = mask[0, :, 0]
    im_h = len(col) - np.count_nonzero(col == -1)
    im_w = len(row) - np.count_nonzero(row == -1)
    return mask[:, :im_h, :im_w]


def get_seg_res(masks, bboxes, mask_nums, image_id, label_to_cat_id_map):
    import pycocotools.mask as mask_util
    seg_res = []
    k = 0
    for i in range(len(mask_nums)):
        cur_image_id = int(image_id[i][0])
        det_nums = mask_nums[i]
        mask_i = masks[k:k + det_nums]
        mask_i = strip_mask(mask_i)
        for j in range(det_nums):
            mask = mask_i[j].astype(np.uint8)
            score = float(bboxes[k][1])
            label = int(bboxes[k][0])
            k = k + 1
            if label == -1:
                continue
            cat_id = label_to_cat_id_map[label]
            rle = mask_util.encode(
                np.array(
                    mask[:, :, None], order="F", dtype="uint8"))[0]
            if six.PY3:
                if 'counts' in rle:
                    rle['counts'] = rle['counts'].decode("utf8")
            sg_res = {
                'image_id': cur_image_id,
                'category_id': cat_id,
                'segmentation': rle,
                'score': score
            }
            seg_res.append(sg_res)
    return seg_res


def get_solov2_segm_res(results, image_id, num_id_to_cat_id_map):
    import pycocotools.mask as mask_util
    segm_res = []
    # for each batch
    segms = results['segm'].astype(np.uint8)
    clsid_labels = results['cate_label']
    clsid_scores = results['cate_score']
    lengths = segms.shape[0]
    im_id = int(image_id[0][0])
    if lengths == 0 or segms is None:
        return None
    # for each sample
    for i in range(lengths - 1):
        clsid = int(clsid_labels[i])
        catid = num_id_to_cat_id_map[clsid]
        score = float(clsid_scores[i])
        mask = segms[i]
        segm = mask_util.encode(np.array(mask[:, :, np.newaxis], order='F'))[0]
        segm['counts'] = segm['counts'].decode('utf8')
        coco_res = {
            'image_id': im_id,
            'category_id': catid,
            'segmentation': segm,
            'score': score
        }
        segm_res.append(coco_res)
    return segm_res


def get_keypoint_res(results, im_id):
    anns = []
    preds = results['keypoint']
    for idx in range(im_id.shape[0]):
        image_id = im_id[idx].item()
        kpts, scores = preds[idx]
        for kpt, score in zip(kpts, scores):
            kpt = kpt.flatten()
            ann = {
                'image_id': image_id,
                'category_id': 1,  # XXX hard code
                'keypoints': kpt.tolist(),
                'score': float(score)
            }
            x = kpt[0::3]
            y = kpt[1::3]
            x0, x1, y0, y1 = np.min(x).item(), np.max(x).item(), np.min(y).item(
            ), np.max(y).item()
            ann['area'] = (x1 - x0) * (y1 - y0)
            ann['bbox'] = [x0, y0, x1 - x0, y1 - y0]
            anns.append(ann)
    return anns