coco_utils.py 6.98 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import numpy as np
import itertools

from ppdet.metrics.json_results import get_det_res, get_det_poly_res, get_seg_res, get_solov2_segm_res, get_keypoint_res
from ppdet.metrics.map_utils import draw_pr_curve

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)


def get_infer_results(outs, catid, bias=0):
    """
    Get result at the stage of inference.
    The output format is dictionary containing bbox or mask result.

    For example, bbox result is a list and each element contains
    image_id, category_id, bbox and score.
    """
    if outs is None or len(outs) == 0:
        raise ValueError(
            'The number of valid detection result if zero. Please use reasonable model and check input data.'
        )

    im_id = outs['im_id']

    infer_res = {}
    if 'bbox' in outs:
        if len(outs['bbox']) > 0 and len(outs['bbox'][0]) > 6:
            infer_res['bbox'] = get_det_poly_res(
                outs['bbox'], outs['bbox_num'], im_id, catid, bias=bias)
        else:
            infer_res['bbox'] = get_det_res(
                outs['bbox'], outs['bbox_num'], im_id, catid, bias=bias)

    if 'mask' in outs:
        # mask post process
        infer_res['mask'] = get_seg_res(outs['mask'], outs['bbox'],
                                        outs['bbox_num'], im_id, catid)

    if 'segm' in outs:
        infer_res['segm'] = get_solov2_segm_res(outs, im_id, catid)

    if 'keypoint' in outs:
        infer_res['keypoint'] = get_keypoint_res(outs, im_id)
        outs['bbox_num'] = [len(infer_res['keypoint'])]

    return infer_res


def cocoapi_eval(jsonfile,
                 style,
                 coco_gt=None,
                 anno_file=None,
                 max_dets=(100, 300, 1000),
                 classwise=False,
                 sigmas=None,
                 use_area=True):
    """
    Args:
        jsonfile (str): Evaluation json file, eg: bbox.json, mask.json.
        style (str): COCOeval style, can be `bbox` , `segm` , `proposal`, `keypoints` and `keypoints_crowd`.
        coco_gt (str): Whether to load COCOAPI through anno_file,
                 eg: coco_gt = COCO(anno_file)
        anno_file (str): COCO annotations file.
        max_dets (tuple): COCO evaluation maxDets.
        classwise (bool): Whether per-category AP and draw P-R Curve or not.
        sigmas (nparray): keypoint labelling sigmas.
        use_area (bool): If gt annotations (eg. CrowdPose, AIC)
                         do not have 'area', please set use_area=False.
    """
    assert coco_gt != None or anno_file != None
    if style == 'keypoints_crowd':
        #please install xtcocotools==1.6
        from xtcocotools.coco import COCO
        from xtcocotools.cocoeval import COCOeval
    else:
        from pycocotools.coco import COCO
        from pycocotools.cocoeval import COCOeval

    if coco_gt == None:
        coco_gt = COCO(anno_file)
    logger.info("Start evaluate...")
    coco_dt = coco_gt.loadRes(jsonfile)
    if style == 'proposal':
        coco_eval = COCOeval(coco_gt, coco_dt, 'bbox')
        coco_eval.params.useCats = 0
        coco_eval.params.maxDets = list(max_dets)
    elif style == 'keypoints_crowd':
        coco_eval = COCOeval(coco_gt, coco_dt, style, sigmas, use_area)
    else:
        coco_eval = COCOeval(coco_gt, coco_dt, style)
    coco_eval.evaluate()
    coco_eval.accumulate()
    coco_eval.summarize()
    if classwise:
        # Compute per-category AP and PR curve
        try:
            from terminaltables import AsciiTable
        except Exception as e:
            logger.error(
                'terminaltables not found, plaese install terminaltables. '
                'for example: `pip install terminaltables`.')
            raise e
        precisions = coco_eval.eval['precision']
        cat_ids = coco_gt.getCatIds()
        # precision: (iou, recall, cls, area range, max dets)
        assert len(cat_ids) == precisions.shape[2]
        results_per_category = []
        for idx, catId in enumerate(cat_ids):
            # area range index 0: all area ranges
            # max dets index -1: typically 100 per image
            nm = coco_gt.loadCats(catId)[0]
            precision = precisions[:, :, idx, 0, -1]
            precision = precision[precision > -1]
            if precision.size:
                ap = np.mean(precision)
            else:
                ap = float('nan')
            results_per_category.append(
                (str(nm["name"]), '{:0.3f}'.format(float(ap))))
            pr_array = precisions[0, :, idx, 0, 2]
            recall_array = np.arange(0.0, 1.01, 0.01)
            draw_pr_curve(
                pr_array,
                recall_array,
                out_dir=style + '_pr_curve',
                file_name='{}_precision_recall_curve.jpg'.format(nm["name"]))

        num_columns = min(6, len(results_per_category) * 2)
        results_flatten = list(itertools.chain(*results_per_category))
        headers = ['category', 'AP'] * (num_columns // 2)
        results_2d = itertools.zip_longest(
            *[results_flatten[i::num_columns] for i in range(num_columns)])
        table_data = [headers]
        table_data += [result for result in results_2d]
        table = AsciiTable(table_data)
        logger.info('Per-category of {} AP: \n{}'.format(style, table.table))
        logger.info("per-category PR curve has output to {} folder.".format(
            style + '_pr_curve'))
    # flush coco evaluation result
    sys.stdout.flush()
    return coco_eval.stats


def json_eval_results(metric, json_directory, dataset):
    """
    cocoapi eval with already exists proposal.json, bbox.json or mask.json
    """
    assert metric == 'COCO'
    anno_file = dataset.get_anno()
    json_file_list = ['proposal.json', 'bbox.json', 'mask.json']
    if json_directory:
        assert os.path.exists(
            json_directory), "The json directory:{} does not exist".format(
                json_directory)
        for k, v in enumerate(json_file_list):
            json_file_list[k] = os.path.join(str(json_directory), v)

    coco_eval_style = ['proposal', 'bbox', 'segm']
    for i, v_json in enumerate(json_file_list):
        if os.path.exists(v_json):
            cocoapi_eval(v_json, coco_eval_style[i], anno_file=anno_file)
        else:
            logger.info("{} not exists!".format(v_json))