"docs/vscode:/vscode.git/clone" did not exist on "55f5fc68acc84027a275649d2cfb320448ed95d7"
export_utils.py 6.87 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import yaml
from collections import OrderedDict

import paddle
from ppdet.data.source.category import get_categories

from ppdet.utils.logger import setup_logger
logger = setup_logger('ppdet.engine')

# Global dictionary
TRT_MIN_SUBGRAPH = {
    'YOLO': 3,
    'PPYOLOE': 10,
    'YOLOX': 20,
    'YOLOF': 40,
    'YOLOv5': 20,
    'RTMDet': 20,
    'YOLOv6': 10,
    'YOLOv7': 10,
    'YOLOv8': 10,
    'DETR': 3,
}

TO_STATIC_SPEC = {
    'yolov5_l_300e_coco': None,
    'yolov7_l_300e_coco': None,
    'yolov3_darknet53_270e_coco': [{
        'im_id': paddle.static.InputSpec(
            name='im_id', shape=[-1, 1], dtype='float32'),
        'is_crowd': paddle.static.InputSpec(
            name='is_crowd', shape=[-1, 50], dtype='float32'),
        'gt_bbox': paddle.static.InputSpec(
            name='gt_bbox', shape=[-1, 50, 4], dtype='float32'),
        'curr_iter': paddle.static.InputSpec(
            name='curr_iter', shape=[-1], dtype='float32'),
        'image': paddle.static.InputSpec(
            name='image', shape=[-1, 3, -1, -1], dtype='float32'),
        'im_shape': paddle.static.InputSpec(
            name='im_shape', shape=[-1, 2], dtype='float32'),
        'scale_factor': paddle.static.InputSpec(
            name='scale_factor', shape=[-1, 2], dtype='float32'),
        'target0': paddle.static.InputSpec(
            name='target0', shape=[-1, 3, 86, -1, -1], dtype='float32'),
        'target1': paddle.static.InputSpec(
            name='target1', shape=[-1, 3, 86, -1, -1], dtype='float32'),
        'target2': paddle.static.InputSpec(
            name='target2', shape=[-1, 3, 86, -1, -1], dtype='float32'),
    }],
}


def apply_to_static(config, model):
    filename = config.get('filename', None)
    spec = TO_STATIC_SPEC.get(filename, None)
    model = paddle.jit.to_static(model, input_spec=spec)
    logger.info("Successfully to apply @to_static with specs: {}".format(spec))
    return model


def _prune_input_spec(input_spec, program, targets):
    # try to prune static program to figure out pruned input spec
    # so we perform following operations in static mode
    device = paddle.get_device()
    paddle.enable_static()
    paddle.set_device(device)
    pruned_input_spec = [{}]
    program = program.clone()
    program = program._prune(targets=targets)
    global_block = program.global_block()
    for name, spec in input_spec[0].items():
        try:
            v = global_block.var(name)
            pruned_input_spec[0][name] = spec
        except Exception:
            pass
    paddle.disable_static(place=device)
    return pruned_input_spec


def _parse_reader(reader_cfg, dataset_cfg, metric, arch, image_shape):
    preprocess_list = []

    anno_file = dataset_cfg.get_anno()

    clsid2catid, catid2name = get_categories(metric, anno_file, arch)

    label_list = [str(cat) for cat in catid2name.values()]

    fuse_normalize = reader_cfg.get('fuse_normalize', False)
    sample_transforms = reader_cfg['sample_transforms']
    for st in sample_transforms[1:]:
        for key, value in st.items():
            p = {'type': key}
            if key == 'Resize':
                if int(image_shape[1]) != -1:
                    value['target_size'] = image_shape[1:]
                value['interp'] = value.get('interp', 1)  # cv2.INTER_LINEAR
            if fuse_normalize and key == 'NormalizeImage':
                continue
            p.update(value)
            preprocess_list.append(p)
    batch_transforms = reader_cfg.get('batch_transforms', None)
    if batch_transforms:
        for bt in batch_transforms:
            for key, value in bt.items():
                # for deploy/infer, use PadStride(stride) instead PadBatch(pad_to_stride)
                if key == 'PadBatch':
                    preprocess_list.append({
                        'type': 'PadStride',
                        'stride': value['pad_to_stride']
                    })
                    break

    return preprocess_list, label_list


def _parse_tracker(tracker_cfg):
    tracker_params = {}
    for k, v in tracker_cfg.items():
        tracker_params.update({k: v})
    return tracker_params


def _dump_infer_config(config, path, image_shape, model):
    arch_state = False
    from ppdet.core.config.yaml_helpers import setup_orderdict
    setup_orderdict()
    use_dynamic_shape = True if image_shape[2] == -1 else False
    infer_cfg = OrderedDict({
        'mode': 'paddle',
        'draw_threshold': 0.5,
        'metric': config['metric'],
        'use_dynamic_shape': use_dynamic_shape
    })
    export_onnx = config.get('export_onnx', False)
    export_eb = config.get('export_eb', False)

    infer_arch = config['architecture']
    if 'RCNN' in infer_arch and export_onnx:
        logger.warning(
            "Exporting RCNN model to ONNX only support batch_size = 1")
        infer_cfg['export_onnx'] = True
        infer_cfg['export_eb'] = export_eb

    for arch, min_subgraph_size in TRT_MIN_SUBGRAPH.items():
        if arch in infer_arch:
            infer_cfg['arch'] = arch
            infer_cfg['min_subgraph_size'] = min_subgraph_size
            arch_state = True
            break

    if infer_arch == 'PPYOLOEWithAuxHead':
        infer_arch = 'PPYOLOE'

    if infer_arch in [
            'YOLOX', 'YOLOF', 'PPYOLOE', 'YOLOv5', 'YOLOv6', 'YOLOv7', 'YOLOv8'
    ]:
        infer_cfg['arch'] = infer_arch
        infer_cfg['min_subgraph_size'] = TRT_MIN_SUBGRAPH[infer_arch]
        arch_state = True

    if not arch_state:
        logger.error(
            'Architecture: {} is not supported for exporting model now.\n'.
            format(infer_arch) +
            'Please set TRT_MIN_SUBGRAPH in ppdet/engine/export_utils.py')
        os._exit(0)
    if 'mask_head' in config[config['architecture']] and config[config[
            'architecture']]['mask_head']:
        infer_cfg['mask'] = True
    label_arch = 'detection_arch'

    reader_cfg = config['TestReader']
    dataset_cfg = config['TestDataset']

    infer_cfg['Preprocess'], infer_cfg['label_list'] = _parse_reader(
        reader_cfg, dataset_cfg, config['metric'], label_arch, image_shape[1:])

    yaml.dump(infer_cfg, open(path, 'w'))
    logger.info("Export inference config file to {}".format(os.path.join(path)))