voc.py 8.58 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import numpy as np

import xml.etree.ElementTree as ET

from ppdet.core.workspace import register, serializable

from .dataset import DetDataset

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)


@register
@serializable
class VOCDataSet(DetDataset):
    """
    Load dataset with PascalVOC format.

    Notes:
    `anno_path` must contains xml file and image file path for annotations.

    Args:
        dataset_dir (str): root directory for dataset.
        image_dir (str): directory for images.
        anno_path (str): voc annotation file path.
        data_fields (list): key name of data dictionary, at least have 'image'.
        sample_num (int): number of samples to load, -1 means all.
        label_list (str): if use_default_label is False, will load
            mapping between category and class index.
        allow_empty (bool): whether to load empty entry. False as default
        empty_ratio (float): the ratio of empty record number to total 
            record's, if empty_ratio is out of [0. ,1.), do not sample the 
            records and use all the empty entries. 1. as default
        repeat (int): repeat times for dataset, use in benchmark.
    """

    def __init__(self,
                 dataset_dir=None,
                 image_dir=None,
                 anno_path=None,
                 data_fields=['image'],
                 sample_num=-1,
                 label_list=None,
                 allow_empty=False,
                 empty_ratio=1.,
                 repeat=1):
        super(VOCDataSet, self).__init__(
            dataset_dir=dataset_dir,
            image_dir=image_dir,
            anno_path=anno_path,
            data_fields=data_fields,
            sample_num=sample_num,
            repeat=repeat)
        self.label_list = label_list
        self.allow_empty = allow_empty
        self.empty_ratio = empty_ratio

    def _sample_empty(self, records, num):
        # if empty_ratio is out of [0. ,1.), do not sample the records
        if self.empty_ratio < 0. or self.empty_ratio >= 1.:
            return records
        import random
        sample_num = min(
            int(num * self.empty_ratio / (1 - self.empty_ratio)), len(records))
        records = random.sample(records, sample_num)
        return records

    def parse_dataset(self, ):
        anno_path = os.path.join(self.dataset_dir, self.anno_path)
        image_dir = os.path.join(self.dataset_dir, self.image_dir)

        # mapping category name to class id
        # first_class:0, second_class:1, ...
        records = []
        empty_records = []
        ct = 0
        cname2cid = {}
        if self.label_list:
            label_path = os.path.join(self.dataset_dir, self.label_list)
            if not os.path.exists(label_path):
                raise ValueError("label_list {} does not exists".format(
                    label_path))
            with open(label_path, 'r') as fr:
                label_id = 0
                for line in fr.readlines():
                    cname2cid[line.strip()] = label_id
                    label_id += 1
        else:
            cname2cid = pascalvoc_label()

        with open(anno_path, 'r') as fr:
            while True:
                line = fr.readline()
                if not line:
                    break
                img_file, xml_file = [os.path.join(image_dir, x) \
                        for x in line.strip().split()[:2]]
                if not os.path.exists(img_file):
                    logger.warning(
                        'Illegal image file: {}, and it will be ignored'.format(
                            img_file))
                    continue
                if not os.path.isfile(xml_file):
                    logger.warning(
                        'Illegal xml file: {}, and it will be ignored'.format(
                            xml_file))
                    continue
                tree = ET.parse(xml_file)
                if tree.find('id') is None:
                    im_id = np.array([ct])
                else:
                    im_id = np.array([int(tree.find('id').text)])

                objs = tree.findall('object')
                im_w = float(tree.find('size').find('width').text)
                im_h = float(tree.find('size').find('height').text)
                if im_w < 0 or im_h < 0:
                    logger.warning(
                        'Illegal width: {} or height: {} in annotation, '
                        'and {} will be ignored'.format(im_w, im_h, xml_file))
                    continue

                num_bbox, i = len(objs), 0
                gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
                gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
                gt_score = np.zeros((num_bbox, 1), dtype=np.float32)
                difficult = np.zeros((num_bbox, 1), dtype=np.int32)
                for obj in objs:
                    cname = obj.find('name').text

                    # user dataset may not contain difficult field
                    _difficult = obj.find('difficult')
                    _difficult = int(
                        _difficult.text) if _difficult is not None else 0

                    x1 = float(obj.find('bndbox').find('xmin').text)
                    y1 = float(obj.find('bndbox').find('ymin').text)
                    x2 = float(obj.find('bndbox').find('xmax').text)
                    y2 = float(obj.find('bndbox').find('ymax').text)
                    x1 = max(0, x1)
                    y1 = max(0, y1)
                    x2 = min(im_w - 1, x2)
                    y2 = min(im_h - 1, y2)
                    if x2 > x1 and y2 > y1:
                        gt_bbox[i, :] = [x1, y1, x2, y2]
                        gt_class[i, 0] = cname2cid[cname]
                        gt_score[i, 0] = 1.
                        difficult[i, 0] = _difficult
                        i += 1
                    else:
                        logger.warning(
                            'Found an invalid bbox in annotations: xml_file: {}'
                            ', x1: {}, y1: {}, x2: {}, y2: {}.'.format(
                                xml_file, x1, y1, x2, y2))
                gt_bbox = gt_bbox[:i, :]
                gt_class = gt_class[:i, :]
                gt_score = gt_score[:i, :]
                difficult = difficult[:i, :]

                voc_rec = {
                    'im_file': img_file,
                    'im_id': im_id,
                    'h': im_h,
                    'w': im_w
                } if 'image' in self.data_fields else {}

                gt_rec = {
                    'gt_class': gt_class,
                    'gt_score': gt_score,
                    'gt_bbox': gt_bbox,
                    'difficult': difficult
                }
                for k, v in gt_rec.items():
                    if k in self.data_fields:
                        voc_rec[k] = v

                if len(objs) == 0:
                    empty_records.append(voc_rec)
                else:
                    records.append(voc_rec)

                ct += 1
                if self.sample_num > 0 and ct >= self.sample_num:
                    break
        assert ct > 0, 'not found any voc record in %s' % (self.anno_path)
        logger.debug('{} samples in file {}'.format(ct, anno_path))
        if self.allow_empty and len(empty_records) > 0:
            empty_records = self._sample_empty(empty_records, len(records))
            records += empty_records
        self.roidbs, self.cname2cid = records, cname2cid

    def get_label_list(self):
        return os.path.join(self.dataset_dir, self.label_list)


def pascalvoc_label():
    labels_map = {
        'aeroplane': 0,
        'bicycle': 1,
        'bird': 2,
        'boat': 3,
        'bottle': 4,
        'bus': 5,
        'car': 6,
        'cat': 7,
        'chair': 8,
        'cow': 9,
        'diningtable': 10,
        'dog': 11,
        'horse': 12,
        'motorbike': 13,
        'person': 14,
        'pottedplant': 15,
        'sheep': 16,
        'sofa': 17,
        'train': 18,
        'tvmonitor': 19
    }
    return labels_map