dataset.py 9.72 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
# 
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import os
import copy
import numpy as np
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
from paddle.io import Dataset
from ppdet.core.workspace import register, serializable
from ppdet.utils.download import get_dataset_path
from ppdet.data import source

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)


@serializable
class DetDataset(Dataset):
    """
    Load detection dataset.

    Args:
        dataset_dir (str): root directory for dataset.
        image_dir (str): directory for images.
        anno_path (str): annotation file path.
        data_fields (list): key name of data dictionary, at least have 'image'.
        sample_num (int): number of samples to load, -1 means all.
        use_default_label (bool): whether to load default label list.
        repeat (int): repeat times for dataset, use in benchmark.
    """

    def __init__(self,
                 dataset_dir=None,
                 image_dir=None,
                 anno_path=None,
                 data_fields=['image'],
                 sample_num=-1,
                 use_default_label=None,
                 repeat=1,
                 **kwargs):
        super(DetDataset, self).__init__()
        self.dataset_dir = dataset_dir if dataset_dir is not None else ''
        self.anno_path = anno_path
        self.image_dir = image_dir if image_dir is not None else ''
        self.data_fields = data_fields
        self.sample_num = sample_num
        self.use_default_label = use_default_label
        self.repeat = repeat
        self._epoch = 0
        self._curr_iter = 0

    def __len__(self, ):
        return len(self.roidbs) * self.repeat

    def __call__(self, *args, **kwargs):
        return self

    def __getitem__(self, idx):
        n = len(self.roidbs)
        if self.repeat > 1:
            idx %= n
        # data batch
        roidb = copy.deepcopy(self.roidbs[idx])
        if self.mixup_epoch == 0 or self._epoch < self.mixup_epoch:
            idx = np.random.randint(n)
            roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
        elif self.cutmix_epoch == 0 or self._epoch < self.cutmix_epoch:
            idx = np.random.randint(n)
            roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
        elif self.mosaic_epoch == 0 or self._epoch < self.mosaic_epoch:
            roidb = [roidb, ] + [
                copy.deepcopy(self.roidbs[np.random.randint(n)])
                for _ in range(4)
            ]
        elif self.pre_img_epoch == 0 or self._epoch < self.pre_img_epoch:
            # Add previous image as input, only used in CenterTrack
            idx_pre_img = idx - 1
            if idx_pre_img < 0:
                idx_pre_img = idx + 1
            roidb = [roidb, ] + [copy.deepcopy(self.roidbs[idx_pre_img])]
        if isinstance(roidb, Sequence):
            for r in roidb:
                r['curr_iter'] = self._curr_iter
        else:
            roidb['curr_iter'] = self._curr_iter
        self._curr_iter += 1

        return self.transform(roidb)

    def check_or_download_dataset(self):
        self.dataset_dir = get_dataset_path(self.dataset_dir, self.anno_path,
                                            self.image_dir)

    def set_kwargs(self, **kwargs):
        self.mixup_epoch = kwargs.get('mixup_epoch', -1)
        self.cutmix_epoch = kwargs.get('cutmix_epoch', -1)
        self.mosaic_epoch = kwargs.get('mosaic_epoch', -1)
        self.pre_img_epoch = kwargs.get('pre_img_epoch', -1)

    def set_transform(self, transform):
        self.transform = transform

    def set_epoch(self, epoch_id):
        self._epoch = epoch_id

    def parse_dataset(self, ):
        raise NotImplementedError(
            "Need to implement parse_dataset method of Dataset")

    def get_anno(self):
        if self.anno_path is None:
            return
        return os.path.join(self.dataset_dir, self.anno_path)


def _is_valid_file(f, extensions=('.jpg', '.jpeg', '.png', '.bmp')):
    return f.lower().endswith(extensions)


def _make_dataset(dir):
    dir = os.path.expanduser(dir)
    if not os.path.isdir(dir):
        raise ('{} should be a dir'.format(dir))
    images = []
    for root, _, fnames in sorted(os.walk(dir, followlinks=True)):
        for fname in sorted(fnames):
            path = os.path.join(root, fname)
            if _is_valid_file(path):
                images.append(path)
    return images


@register
@serializable
class ImageFolder(DetDataset):
    def __init__(self,
                 dataset_dir=None,
                 image_dir=None,
                 anno_path=None,
                 sample_num=-1,
                 use_default_label=None,
                 **kwargs):
        super(ImageFolder, self).__init__(
            dataset_dir,
            image_dir,
            anno_path,
            sample_num=sample_num,
            use_default_label=use_default_label)
        self._imid2path = {}
        self.roidbs = None
        self.sample_num = sample_num

    def check_or_download_dataset(self):
        return

    def get_anno(self):
        if self.anno_path is None:
            return
        if self.dataset_dir:
            return os.path.join(self.dataset_dir, self.anno_path)
        else:
            return self.anno_path

    def parse_dataset(self, ):
        if not self.roidbs:
            self.roidbs = self._load_images()

    def _parse(self):
        image_dir = self.image_dir
        if not isinstance(image_dir, Sequence):
            image_dir = [image_dir]
        images = []
        for im_dir in image_dir:
            if os.path.isdir(im_dir):
                im_dir = os.path.join(self.dataset_dir, im_dir)
                images.extend(_make_dataset(im_dir))
            elif os.path.isfile(im_dir) and _is_valid_file(im_dir):
                images.append(im_dir)
        return images

    def _load_images(self):
        images = self._parse()
        ct = 0
        records = []
        for image in images:
            assert image != '' and os.path.isfile(image), \
                    "Image {} not found".format(image)
            if self.sample_num > 0 and ct >= self.sample_num:
                break
            rec = {'im_id': np.array([ct]), 'im_file': image}
            self._imid2path[ct] = image
            ct += 1
            records.append(rec)
        assert len(records) > 0, "No image file found"
        return records

    def get_imid2path(self):
        return self._imid2path

    def set_images(self, images):
        self.image_dir = images
        self.roidbs = self._load_images()

    def set_slice_images(self,
                         images,
                         slice_size=[640, 640],
                         overlap_ratio=[0.25, 0.25]):
        self.image_dir = images
        ori_records = self._load_images()
        try:
            import sahi
            from sahi.slicing import slice_image
        except Exception as e:
            logger.error(
                'sahi not found, plaese install sahi. '
                'for example: `pip install sahi`, see https://github.com/obss/sahi.'
            )
            raise e

        sub_img_ids = 0
        ct = 0
        ct_sub = 0
        records = []
        for i, ori_rec in enumerate(ori_records):
            im_path = ori_rec['im_file']
            slice_image_result = sahi.slicing.slice_image(
                image=im_path,
                slice_height=slice_size[0],
                slice_width=slice_size[1],
                overlap_height_ratio=overlap_ratio[0],
                overlap_width_ratio=overlap_ratio[1])

            sub_img_num = len(slice_image_result)
            for _ind in range(sub_img_num):
                im = slice_image_result.images[_ind]
                rec = {
                    'image': im,
                    'im_id': np.array([sub_img_ids + _ind]),
                    'h': im.shape[0],
                    'w': im.shape[1],
                    'ori_im_id': np.array([ori_rec['im_id'][0]]),
                    'st_pix': np.array(
                        slice_image_result.starting_pixels[_ind],
                        dtype=np.float32),
                    'is_last': 1 if _ind == sub_img_num - 1 else 0,
                } if 'image' in self.data_fields else {}
                records.append(rec)
            ct_sub += sub_img_num
            ct += 1
        logger.info('{} samples and slice to {} sub_samples.'.format(ct,
                                                                     ct_sub))
        self.roidbs = records

    def get_label_list(self):
        # Only VOC dataset needs label list in ImageFold 
        return self.anno_path


@register
class CommonDataset(object):
    def __init__(self, **dataset_args):
        super(CommonDataset, self).__init__()
        dataset_args = copy.deepcopy(dataset_args)
        type = dataset_args.pop("name")
        self.dataset = getattr(source, type)(**dataset_args)

    def __call__(self):
        return self.dataset


@register
class TrainDataset(CommonDataset):
    pass


@register
class EvalMOTDataset(CommonDataset):
    pass


@register
class TestMOTDataset(CommonDataset):
    pass


@register
class EvalDataset(CommonDataset):
    pass


@register
class TestDataset(CommonDataset):
    pass