reader.py 21.5 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import os
import traceback
import six
import sys
if sys.version_info >= (3, 0):
    pass
else:
    pass
import numpy as np
import paddle
import paddle.nn.functional as F

from copy import deepcopy

from paddle.io import DataLoader, DistributedBatchSampler
from .utils import default_collate_fn

from ppdet.core.workspace import register
from . import transform
from .shm_utils import _get_shared_memory_size_in_M

from ppdet.utils.logger import setup_logger
logger = setup_logger('reader')

MAIN_PID = os.getpid()


class Compose(object):
    def __init__(self, transforms, num_classes=80):
        self.transforms = transforms
        self.transforms_cls = []
        for t in self.transforms:
            for k, v in t.items():
                op_cls = getattr(transform, k)
                f = op_cls(**v)
                if hasattr(f, 'num_classes'):
                    f.num_classes = num_classes

                self.transforms_cls.append(f)

    def __call__(self, data):
        for f in self.transforms_cls:
            try:
                data = f(data)
            except Exception as e:
                stack_info = traceback.format_exc()
                logger.warning("fail to map sample transform [{}] "
                               "with error: {} and stack:\n{}".format(
                                   f, e, str(stack_info)))
                raise e

        return data


class BatchCompose(Compose):
    def __init__(self, transforms, num_classes=80, collate_batch=True):
        super(BatchCompose, self).__init__(transforms, num_classes)
        self.collate_batch = collate_batch

    def __call__(self, data):
        for f in self.transforms_cls:
            try:
                data = f(data)
            except Exception as e:
                stack_info = traceback.format_exc()
                logger.warning("fail to map batch transform [{}] "
                               "with error: {} and stack:\n{}".format(
                                   f, e, str(stack_info)))
                raise e

        # remove keys which is not needed by model
        extra_key = ['h', 'w', 'flipped']
        for k in extra_key:
            for sample in data:
                if k in sample:
                    sample.pop(k)

        # batch data, if user-define batch function needed
        # use user-defined here
        if self.collate_batch:
            batch_data = default_collate_fn(data)
        else:
            batch_data = {}
            for k in data[0].keys():
                tmp_data = []
                for i in range(len(data)):
                    tmp_data.append(data[i][k])
                if not 'gt_' in k and not 'is_crowd' in k and not 'difficult' in k:
                    tmp_data = np.stack(tmp_data, axis=0)
                batch_data[k] = tmp_data
        return batch_data


class BaseDataLoader(object):
    """
    Base DataLoader implementation for detection models

    Args:
        sample_transforms (list): a list of transforms to perform
                                  on each sample
        batch_transforms (list): a list of transforms to perform
                                 on batch
        batch_size (int): batch size for batch collating, default 1.
        shuffle (bool): whether to shuffle samples
        drop_last (bool): whether to drop the last incomplete,
                          default False
        num_classes (int): class number of dataset, default 80
        collate_batch (bool): whether to collate batch in dataloader.
            If set to True, the samples will collate into batch according
            to the batch size. Otherwise, the ground-truth will not collate,
            which is used when the number of ground-truch is different in 
            samples.
        use_shared_memory (bool): whether to use shared memory to
                accelerate data loading, enable this only if you
                are sure that the shared memory size of your OS
                is larger than memory cost of input datas of model.
                Note that shared memory will be automatically
                disabled if the shared memory of OS is less than
                1G, which is not enough for detection models.
                Default False.
    """

    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 num_classes=80,
                 collate_batch=True,
                 use_shared_memory=False,
                 **kwargs):
        # sample transform
        self._sample_transforms = Compose(
            sample_transforms, num_classes=num_classes)

        # batch transfrom 
        self._batch_transforms = BatchCompose(batch_transforms, num_classes,
                                              collate_batch)
        self.batch_size = batch_size
        self.shuffle = shuffle
        self.drop_last = drop_last
        self.use_shared_memory = use_shared_memory
        self.kwargs = kwargs

    def __call__(self,
                 dataset,
                 worker_num,
                 batch_sampler=None,
                 return_list=False):
        self.dataset = dataset
        self.dataset.check_or_download_dataset()
        self.dataset.parse_dataset()
        # get data
        self.dataset.set_transform(self._sample_transforms)
        # set kwargs
        self.dataset.set_kwargs(**self.kwargs)
        # batch sampler
        if batch_sampler is None:
            self._batch_sampler = DistributedBatchSampler(
                self.dataset,
                batch_size=self.batch_size,
                shuffle=self.shuffle,
                drop_last=self.drop_last)
        else:
            self._batch_sampler = batch_sampler

        # DataLoader do not start sub-process in Windows and Mac
        # system, do not need to use shared memory
        use_shared_memory = self.use_shared_memory and \
                            sys.platform not in ['win32', 'darwin']
        # check whether shared memory size is bigger than 1G(1024M)
        if use_shared_memory:
            shm_size = _get_shared_memory_size_in_M()
            if shm_size is not None and shm_size < 1024.:
                logger.warning("Shared memory size is less than 1G, "
                               "disable shared_memory in DataLoader")
                use_shared_memory = False

        self.dataloader = DataLoader(
            dataset=self.dataset,
            batch_sampler=self._batch_sampler,
            collate_fn=self._batch_transforms,
            num_workers=worker_num,
            return_list=return_list,
            use_shared_memory=use_shared_memory)
        self.loader = iter(self.dataloader)

        return self

    def __len__(self):
        return len(self._batch_sampler)

    def __iter__(self):
        return self

    def __next__(self):
        try:
            return next(self.loader)
        except StopIteration:
            self.loader = iter(self.dataloader)
            six.reraise(*sys.exc_info())

    def next(self):
        # python2 compatibility
        return self.__next__()


@register
class TrainReader(BaseDataLoader):
    __shared__ = ['num_classes']

    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=True,
                 drop_last=True,
                 num_classes=80,
                 collate_batch=True,
                 **kwargs):
        super(TrainReader, self).__init__(sample_transforms, batch_transforms,
                                          batch_size, shuffle, drop_last,
                                          num_classes, collate_batch, **kwargs)


@register
class EvalReader(BaseDataLoader):
    __shared__ = ['num_classes']

    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=True,
                 num_classes=80,
                 **kwargs):
        super(EvalReader, self).__init__(sample_transforms, batch_transforms,
                                         batch_size, shuffle, drop_last,
                                         num_classes, **kwargs)


@register
class TestReader(BaseDataLoader):
    __shared__ = ['num_classes']

    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 num_classes=80,
                 **kwargs):
        super(TestReader, self).__init__(sample_transforms, batch_transforms,
                                         batch_size, shuffle, drop_last,
                                         num_classes, **kwargs)


@register
class EvalMOTReader(BaseDataLoader):
    __shared__ = ['num_classes']

    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 num_classes=1,
                 **kwargs):
        super(EvalMOTReader, self).__init__(sample_transforms, batch_transforms,
                                            batch_size, shuffle, drop_last,
                                            num_classes, **kwargs)


@register
class TestMOTReader(BaseDataLoader):
    __shared__ = ['num_classes']

    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 num_classes=1,
                 **kwargs):
        super(TestMOTReader, self).__init__(sample_transforms, batch_transforms,
                                            batch_size, shuffle, drop_last,
                                            num_classes, **kwargs)


# For Semi-Supervised Object Detection (SSOD)
class Compose_SSOD(object):
    def __init__(self, base_transforms, weak_aug, strong_aug, num_classes=80):
        self.base_transforms = base_transforms
        self.base_transforms_cls = []
        for t in self.base_transforms:
            for k, v in t.items():
                op_cls = getattr(transform, k)
                f = op_cls(**v)
                if hasattr(f, 'num_classes'):
                    f.num_classes = num_classes
                self.base_transforms_cls.append(f)

        self.weak_augs = weak_aug
        self.weak_augs_cls = []
        for t in self.weak_augs:
            for k, v in t.items():
                op_cls = getattr(transform, k)
                f = op_cls(**v)
                if hasattr(f, 'num_classes'):
                    f.num_classes = num_classes
                self.weak_augs_cls.append(f)

        self.strong_augs = strong_aug
        self.strong_augs_cls = []
        for t in self.strong_augs:
            for k, v in t.items():
                op_cls = getattr(transform, k)
                f = op_cls(**v)
                if hasattr(f, 'num_classes'):
                    f.num_classes = num_classes
                self.strong_augs_cls.append(f)

    def __call__(self, data):
        for f in self.base_transforms_cls:
            try:
                data = f(data)
            except Exception as e:
                stack_info = traceback.format_exc()
                logger.warning("fail to map sample transform [{}] "
                               "with error: {} and stack:\n{}".format(
                                   f, e, str(stack_info)))
                raise e

        weak_data = deepcopy(data)
        strong_data = deepcopy(data)
        for f in self.weak_augs_cls:
            try:
                weak_data = f(weak_data)
            except Exception as e:
                stack_info = traceback.format_exc()
                logger.warning("fail to map weak aug [{}] "
                               "with error: {} and stack:\n{}".format(
                                   f, e, str(stack_info)))
                raise e

        for f in self.strong_augs_cls:
            try:
                strong_data = f(strong_data)
            except Exception as e:
                stack_info = traceback.format_exc()
                logger.warning("fail to map strong aug [{}] "
                               "with error: {} and stack:\n{}".format(
                                   f, e, str(stack_info)))
                raise e

        weak_data['strong_aug'] = strong_data
        return weak_data


class BatchCompose_SSOD(Compose):
    def __init__(self, transforms, num_classes=80, collate_batch=True):
        super(BatchCompose_SSOD, self).__init__(transforms, num_classes)
        self.collate_batch = collate_batch

    def __call__(self, data):
        # split strong_data from data(weak_data)
        strong_data = []
        for sample in data:
            strong_data.append(sample['strong_aug'])
            sample.pop('strong_aug')

        for f in self.transforms_cls:
            try:
                data = f(data)
                strong_data = f(strong_data)
            except Exception as e:
                stack_info = traceback.format_exc()
                logger.warning("fail to map batch transform [{}] "
                               "with error: {} and stack:\n{}".format(
                                   f, e, str(stack_info)))
                raise e

        # remove keys which is not needed by model
        extra_key = ['h', 'w', 'flipped']
        for k in extra_key:
            for sample in data:
                if k in sample:
                    sample.pop(k)
            for sample in strong_data:
                if k in sample:
                    sample.pop(k)

        # batch data, if user-define batch function needed
        # use user-defined here
        if self.collate_batch:
            batch_data = default_collate_fn(data)
            strong_batch_data = default_collate_fn(strong_data)
            return batch_data, strong_batch_data
        else:
            batch_data = {}
            for k in data[0].keys():
                tmp_data = []
                for i in range(len(data)):
                    tmp_data.append(data[i][k])
                if not 'gt_' in k and not 'is_crowd' in k and not 'difficult' in k:
                    tmp_data = np.stack(tmp_data, axis=0)
                batch_data[k] = tmp_data

            strong_batch_data = {}
            for k in strong_data[0].keys():
                tmp_data = []
                for i in range(len(strong_data)):
                    tmp_data.append(strong_data[i][k])
                if not 'gt_' in k and not 'is_crowd' in k and not 'difficult' in k:
                    tmp_data = np.stack(tmp_data, axis=0)
                strong_batch_data[k] = tmp_data

        return batch_data, strong_batch_data


class CombineSSODLoader(object):
    def __init__(self, label_loader, unlabel_loader):
        self.label_loader = label_loader
        self.unlabel_loader = unlabel_loader

    def __iter__(self):
        while True:
            try:
                label_samples = next(self.label_loader_iter)
            except:
                self.label_loader_iter = iter(self.label_loader)
                label_samples = next(self.label_loader_iter)

            try:
                unlabel_samples = next(self.unlabel_loader_iter)
            except:
                self.unlabel_loader_iter = iter(self.unlabel_loader)
                unlabel_samples = next(self.unlabel_loader_iter)

            yield (
                label_samples[0],  # sup weak
                label_samples[1],  # sup strong
                unlabel_samples[0],  # unsup weak
                unlabel_samples[1]  # unsup strong
            )

    def __call__(self):
        return self.__iter__()


class BaseSemiDataLoader(object):
    def __init__(self,
                 sample_transforms=[],
                 weak_aug=[],
                 strong_aug=[],
                 sup_batch_transforms=[],
                 unsup_batch_transforms=[],
                 sup_batch_size=1,
                 unsup_batch_size=1,
                 shuffle=True,
                 drop_last=True,
                 num_classes=80,
                 collate_batch=True,
                 use_shared_memory=False,
                 **kwargs):
        # sup transforms
        self._sample_transforms_label = Compose_SSOD(
            sample_transforms, weak_aug, strong_aug, num_classes=num_classes)
        self._batch_transforms_label = BatchCompose_SSOD(
            sup_batch_transforms, num_classes, collate_batch)
        self.batch_size_label = sup_batch_size

        # unsup transforms
        self._sample_transforms_unlabel = Compose_SSOD(
            sample_transforms, weak_aug, strong_aug, num_classes=num_classes)
        self._batch_transforms_unlabel = BatchCompose_SSOD(
            unsup_batch_transforms, num_classes, collate_batch)
        self.batch_size_unlabel = unsup_batch_size

        # common
        self.shuffle = shuffle
        self.drop_last = drop_last
        self.use_shared_memory = use_shared_memory
        self.kwargs = kwargs

    def __call__(self,
                 dataset_label,
                 dataset_unlabel,
                 worker_num,
                 batch_sampler_label=None,
                 batch_sampler_unlabel=None,
                 return_list=False):
        # sup dataset 
        self.dataset_label = dataset_label
        self.dataset_label.check_or_download_dataset()
        self.dataset_label.parse_dataset()
        self.dataset_label.set_transform(self._sample_transforms_label)
        self.dataset_label.set_kwargs(**self.kwargs)
        if batch_sampler_label is None:
            self._batch_sampler_label = DistributedBatchSampler(
                self.dataset_label,
                batch_size=self.batch_size_label,
                shuffle=self.shuffle,
                drop_last=self.drop_last)
        else:
            self._batch_sampler_label = batch_sampler_label

        # unsup dataset
        self.dataset_unlabel = dataset_unlabel
        self.dataset_unlabel.length = self.dataset_label.__len__()
        self.dataset_unlabel.check_or_download_dataset()
        self.dataset_unlabel.parse_dataset()
        self.dataset_unlabel.set_transform(self._sample_transforms_unlabel)
        self.dataset_unlabel.set_kwargs(**self.kwargs)
        if batch_sampler_unlabel is None:
            self._batch_sampler_unlabel = DistributedBatchSampler(
                self.dataset_unlabel,
                batch_size=self.batch_size_unlabel,
                shuffle=self.shuffle,
                drop_last=self.drop_last)
        else:
            self._batch_sampler_unlabel = batch_sampler_unlabel

        # DataLoader do not start sub-process in Windows and Mac
        # system, do not need to use shared memory
        use_shared_memory = self.use_shared_memory and \
                            sys.platform not in ['win32', 'darwin']
        # check whether shared memory size is bigger than 1G(1024M)
        if use_shared_memory:
            shm_size = _get_shared_memory_size_in_M()
            if shm_size is not None and shm_size < 1024.:
                logger.warning("Shared memory size is less than 1G, "
                               "disable shared_memory in DataLoader")
                use_shared_memory = False

        self.dataloader_label = DataLoader(
            dataset=self.dataset_label,
            batch_sampler=self._batch_sampler_label,
            collate_fn=self._batch_transforms_label,
            num_workers=worker_num,
            return_list=return_list,
            use_shared_memory=use_shared_memory)

        self.dataloader_unlabel = DataLoader(
            dataset=self.dataset_unlabel,
            batch_sampler=self._batch_sampler_unlabel,
            collate_fn=self._batch_transforms_unlabel,
            num_workers=worker_num,
            return_list=return_list,
            use_shared_memory=use_shared_memory)

        self.dataloader = CombineSSODLoader(self.dataloader_label,
                                            self.dataloader_unlabel)
        self.loader = iter(self.dataloader)
        return self

    def __len__(self):
        return len(self._batch_sampler_label)

    def __iter__(self):
        return self

    def __next__(self):
        return next(self.loader)

    def next(self):
        # python2 compatibility
        return self.__next__()


@register
class SemiTrainReader(BaseSemiDataLoader):
    __shared__ = ['num_classes']

    def __init__(self,
                 sample_transforms=[],
                 weak_aug=[],
                 strong_aug=[],
                 sup_batch_transforms=[],
                 unsup_batch_transforms=[],
                 sup_batch_size=1,
                 unsup_batch_size=1,
                 shuffle=True,
                 drop_last=True,
                 num_classes=80,
                 collate_batch=True,
                 **kwargs):
        super(SemiTrainReader, self).__init__(
            sample_transforms, weak_aug, strong_aug, sup_batch_transforms,
            unsup_batch_transforms, sup_batch_size, unsup_batch_size, shuffle,
            drop_last, num_classes, collate_batch, **kwargs)