DetAnnoTools_en.md 6.26 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
[简体中文](DetAnnoTools.md) | English



# Object Detection Annotation Tools

## Concents

[LabelMe](#LabelMe)

* [Instruction](#Instruction-of-LabelMe)
  * [Installation](#Installation)
  * [Annotation of Images](#Annotation-of-images-in-LabelMe)
* [Annotation Format](#Annotation-Format-of-LabelMe)
  * [Export Format](#Export-Format-of-LabelMe)
  * [Summary of Format Conversion](#Summary-of-Format-Conversion)
  * [Annotation file(json)—>VOC Dataset](#annotation-filejsonvoc-dataset)
  * [Annotation file(json)—>COCO Dataset](#annotation-filejsoncoco-dataset)

[LabelImg](#LabelImg)

* [Instruction](#Instruction-of-LabelImg)
  * [Installation](#Installation-of-LabelImg)
  * [Installation Notes](#Installation-Notes)
  * [Annotation of images](#Annotation-of-images-in-LabelImg)
* [Annotation Format](#Annotation-Format-of-LabelImg)
  * [Export Format](#Export-Format-of-LabelImg)
  * [Notes of Format Conversion](#Notes-of-Format-Conversion)



## [LabelMe](https://github.com/wkentaro/labelme)

### Instruction of LabelMe

#### Installation

Please refer to [The github of LabelMe](https://github.com/wkentaro/labelme) for installation details.

<details>
<summary><b> Ubuntu</b></summary>

```
sudo apt-get install labelme

# or
sudo pip3 install labelme

# or install standalone executable from:
# https://github.com/wkentaro/labelme/releases
```

</details>

<details>
<summary><b> macOS</b></summary>

```
brew install pyqt  # maybe pyqt5
pip install labelme

# or
brew install wkentaro/labelme/labelme  # command line interface
# brew install --cask wkentaro/labelme/labelme  # app

# or install standalone executable/app from:
# https://github.com/wkentaro/labelme/releases
```

</details>



We recommend installing by Anoncanda.

```
conda create –name=labelme python=3
conda activate labelme
pip install pyqt5
pip install labelme
```





#### Annotation of Images in LabelMe

After starting labelme, select an image or an folder with images.

Select  `create polygons`   in the formula bar. Draw an annotation area as shown in the following  GIF. You can right-click on the image to select different shape. When finished, press the Enter/Return key, then fill the corresponding label in the popup box, such as, people.

Click the save button in the formula bar,it will generate an annotation file in json.

![](https://media3.giphy.com/media/XdnHZgge5eynRK3ATK/giphy.gif?cid=790b7611192e4c0ec2b5e6990b6b0f65623154ffda66b122&rid=giphy.gif&ct=g)



### Annotation Format of LabelMe

#### Export Format of LabelMe

```
#generate an annotation file
png/jpeg/jpg-->labelme-->json
```





#### Summary of Format Conversion

```
#convert annotation file to VOC dataset format
json-->labelme2voc.py-->VOC dataset

#convert annotation file to COCO dataset format
json-->labelme2coco.py-->COCO dataset
```





#### Annotation file(json)—>VOC Dataset

Use this script [labelme2voc.py](https://github.com/wkentaro/labelme/blob/main/examples/bbox_detection/labelme2voc.py) in command line.

```Te
python labelme2voc.py data_annotated(annotation folder) data_dataset_voc(output folder) --labels labels.txt
```

Then, it will generate following contents:

```
# It generates:
#   - data_dataset_voc/JPEGImages
#   - data_dataset_voc/Annotations
#   - data_dataset_voc/AnnotationsVisualization

```





#### Annotation file(json)—>COCO Dataset

Convert the data annotated by LabelMe to COCO dataset by the script [x2coco.py](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/tools/x2coco.py) provided by PaddleDetection.

```bash
python tools/x2coco.py \
                --dataset_type labelme \
                --json_input_dir ./labelme_annos/ \
                --image_input_dir ./labelme_imgs/ \
                --output_dir ./cocome/ \
                --train_proportion 0.8 \
                --val_proportion 0.2 \
                --test_proportion 0.0
```

After the user dataset is converted to COCO data, the directory structure is as follows (Try to avoid use Chinese for the path name in case of errors caused by Chinese coding problems):

```
dataset/xxx/
├── annotations
│   ├── train.json  # Annotation file of coco data
│   ├── valid.json  # Annotation file of coco data
├── images
│   ├── xxx1.jpg
│   ├── xxx2.jpg
│   ├── xxx3.jpg
│   |   ...
...
```





## [LabelImg](https://github.com/tzutalin/labelImg)

### Instruction

#### Installation of LabelImg

Please refer to [The github of LabelImg](https://github.com/tzutalin/labelImg) for installation details.

<details>
<summary><b> Ubuntu</b></summary>

```
sudo apt-get install pyqt5-dev-tools
sudo pip3 install -r requirements/requirements-linux-python3.txt
make qt5py3
python3 labelImg.py
python3 labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]
```

</details>

<details>
<summary><b>macOS</b></summary>

```
brew install qt  # Install qt-5.x.x by Homebrew
brew install libxml2

or using pip

pip3 install pyqt5 lxml # Install qt and lxml by pip

make qt5py3
python3 labelImg.py
python3 labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]
```

</details>



We recommend installing by Anoncanda.

Download and go to the folder of  [labelImg](https://github.com/tzutalin/labelImg#labelimg)

```
conda install pyqt=5
conda install -c anaconda lxml
pyrcc5 -o libs/resources.py resources.qrc
python labelImg.py
python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]
```





#### Installation Notes

Use python scripts to startup LabelImg: `python labelImg.py <IMAGE_PATH>`

#### Annotation of images in LabelImg

After the startup of LabelImg, select an image or a folder with images.

Select  `Create RectBox`  in the formula bar. Draw an annotation area as shown in the following  GIF. When finished, select corresponding label in the popup box. Then save the annotated file in three forms:  VOC/YOLO/CreateML.



![](https://user-images.githubusercontent.com/34162360/177526022-fd9c63d8-e476-4b63-ae02-76d032bb7656.gif)





### Annotation Format of LabelImg

#### Export Format of LabelImg

```
#generate annotation files
png/jpeg/jpg-->labelImg-->xml/txt/json
```



#### Notes of Format Conversion

**PaddleDetection supports the format of VOC or COCO.** The annotation file generated by LabelImg needs to be converted by VOC or COCO.  You can refer to [PrepareDataSet](./PrepareDataSet.md#%E5%87%86%E5%A4%87%E8%AE%AD%E7%BB%83%E6%95%B0%E6%8D%AE).