web_service.py 9.45 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy

from paddle_serving_server.web_service import WebService, Op
from paddle_serving_server.proto import general_model_config_pb2 as m_config
import google.protobuf.text_format

import os
import numpy as np
import base64
from PIL import Image
import io
from preprocess_ops import Compose
from postprocess_ops import HRNetPostProcess

from argparse import ArgumentParser, RawDescriptionHelpFormatter
import yaml

# Global dictionary
SUPPORT_MODELS = {
    'YOLO', 'PPYOLOE', 'YOLOX', 'YOLOv5', 'YOLOv6', 'YOLOv7', 'YOLOv8', 'RTMDet'
}

GLOBAL_VAR = {}


class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument(
            "-c",
            "--config",
            default="deploy/serving/python/config.yml",
            help="configuration file to use")
        self.add_argument(
            "--model_dir",
            type=str,
            default=None,
            help=("Directory include:'model.pdiparams', 'model.pdmodel', "
                  "'infer_cfg.yml', created by tools/export_model.py."),
            required=True)
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.service_config = self._parse_opt(args.opt, args.config)
        args.model_config = PredictConfig(args.model_dir)
        return args

    def _parse_helper(self, v):
        if v.isnumeric():
            if "." in v:
                v = float(v)
            else:
                v = int(v)
        elif v == "True" or v == "False":
            v = (v == "True")
        return v

    def _parse_opt(self, opts, conf_path):
        f = open(conf_path)
        config = yaml.load(f, Loader=yaml.Loader)
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            v = self._parse_helper(v)
            if "devices" in k:
                v = str(v)
            print(k, v, type(v))
            cur = config
            parent = cur
            for kk in k.split("."):
                if kk not in cur:
                    cur[kk] = {}
                    parent = cur
                    cur = cur[kk]
                else:
                    parent = cur
                    cur = cur[kk]
            parent[k.split(".")[-1]] = v
        return config


class PredictConfig(object):
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of infer_cfg.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.label_list = yml_conf['label_list']
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
        self.draw_threshold = yml_conf.get("draw_threshold", 0.5)
        self.mask = yml_conf.get("mask", False)
        self.tracker = yml_conf.get("tracker", None)
        self.nms = yml_conf.get("NMS", None)
        self.fpn_stride = yml_conf.get("fpn_stride", None)
        if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
            print(
                'The RCNN export model is used for ONNX and it only supports batch_size = 1'
            )
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


class DetectorOp(Op):
    def init_op(self):
        self.preprocess_pipeline = Compose(GLOBAL_VAR['preprocess_ops'])

    def preprocess(self, input_dicts, data_id, log_id):
        (_, input_dict), = input_dicts.items()
        inputs = []
        for key, data in input_dict.items():
            data = base64.b64decode(data.encode('utf8'))
            byte_stream = io.BytesIO(data)
            img = Image.open(byte_stream).convert("RGB")
            inputs.append(self.preprocess_pipeline(img))
        inputs = self.collate_inputs(inputs)
        return inputs, False, None, ""

    def postprocess(self, input_dicts, fetch_dict, data_id, log_id):
        (_, input_dict), = input_dicts.items()
        if GLOBAL_VAR['model_config'].arch in ["HRNet"]:
            result = self.parse_keypoint_result(input_dict, fetch_dict)
        else:
            result = self.parse_detection_result(input_dict, fetch_dict)
        return result, None, ""

    def collate_inputs(self, inputs):
        collate_inputs = {k: [] for k in inputs[0].keys()}
        for info in inputs:
            for k in collate_inputs.keys():
                collate_inputs[k].append(info[k])
        return {
            k: np.stack(v)
            for k, v in collate_inputs.items() if k in GLOBAL_VAR['feed_vars']
        }

    def parse_detection_result(self, input_dict, fetch_dict):
        bboxes = fetch_dict[GLOBAL_VAR['fetch_vars'][0]]
        bboxes_num = fetch_dict[GLOBAL_VAR['fetch_vars'][1]]
        if GLOBAL_VAR['model_config'].mask:
            masks = fetch_dict[GLOBAL_VAR['fetch_vars'][2]]
        idx = 0
        results = {}
        for img_name, num in zip(input_dict.keys(), bboxes_num):
            if num == 0:
                results[img_name] = 'No object detected!'
            else:
                result = []
                bbox = bboxes[idx:idx + num]
                for line in bbox:
                    if line[0] > -1 and line[1] > GLOBAL_VAR[
                            'model_config'].draw_threshold:
                        result.append(
                            f"{int(line[0])} {line[1]} "
                            f"{line[2]} {line[3]} {line[4]} {line[5]}")
                if len(result) == 0:
                    result = 'No object detected!'
                results[img_name] = result
            idx += num
        return results

    def parse_keypoint_result(self, input_dict, fetch_dict):
        heatmap = fetch_dict["conv2d_441.tmp_1"]
        keypoint_postprocess = HRNetPostProcess()
        im_shape = []
        for key, data in input_dict.items():
            data = base64.b64decode(data.encode('utf8'))
            byte_stream = io.BytesIO(data)
            img = Image.open(byte_stream).convert("RGB")
            im_shape.append([img.width, img.height])
        im_shape = np.array(im_shape)
        center = np.round(im_shape / 2.)
        scale = im_shape / 200.
        kpts, scores = keypoint_postprocess(heatmap, center, scale)
        results = {"keypoint": kpts, "scores": scores}
        return results


class DetectorService(WebService):
    def get_pipeline_response(self, read_op):
        return DetectorOp(name="ppdet", input_ops=[read_op])


def get_model_vars(model_dir, service_config):
    serving_server_dir = os.path.join(model_dir, "serving_server")
    # rewrite model_config
    service_config['op']['ppdet']['local_service_conf'][
        'model_config'] = serving_server_dir
    serving_server_conf = os.path.join(serving_server_dir,
                                       "serving_server_conf.prototxt")
    with open(serving_server_conf, 'r') as f:
        model_var = google.protobuf.text_format.Merge(
            str(f.read()), m_config.GeneralModelConfig())
    feed_vars = [var.name for var in model_var.feed_var]
    fetch_vars = [var.name for var in model_var.fetch_var]
    return feed_vars, fetch_vars


if __name__ == '__main__':
    # load config and prepare the service
    FLAGS = ArgsParser().parse_args()
    feed_vars, fetch_vars = get_model_vars(FLAGS.model_dir,
                                           FLAGS.service_config)
    GLOBAL_VAR['feed_vars'] = feed_vars
    GLOBAL_VAR['fetch_vars'] = fetch_vars
    GLOBAL_VAR['preprocess_ops'] = FLAGS.model_config.preprocess_infos
    GLOBAL_VAR['model_config'] = FLAGS.model_config
    print(FLAGS)
    # define the service
    uci_service = DetectorService(name="ppdet")
    uci_service.prepare_pipeline_config(yml_dict=FLAGS.service_config)
    # start the service
    uci_service.run_service()