preprocess_ops.py 15.9 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
import numpy as np
import cv2
import copy


def decode_image(im):
    im = np.array(im)
    img_info = {
        "im_shape": np.array(
            im.shape[:2], dtype=np.float32),
        "scale_factor": np.array(
            [1., 1.], dtype=np.float32)
    }
    return im, img_info


class Resize(object):
    """resize image by target_size and max_size
    Args:
        target_size (int): the target size of image
        keep_ratio (bool): whether keep_ratio or not, default true
        interp (int): method of resize
    """

    def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR):
        if isinstance(target_size, int):
            target_size = [target_size, target_size]
        self.target_size = target_size
        self.keep_ratio = keep_ratio
        self.interp = interp

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        assert len(self.target_size) == 2
        assert self.target_size[0] > 0 and self.target_size[1] > 0
        im_channel = im.shape[2]
        im_scale_y, im_scale_x = self.generate_scale(im)
        im = cv2.resize(
            im,
            None,
            None,
            fx=im_scale_x,
            fy=im_scale_y,
            interpolation=self.interp)
        im_info['im_shape'] = np.array(im.shape[:2]).astype('float32')
        im_info['scale_factor'] = np.array(
            [im_scale_y, im_scale_x]).astype('float32')
        return im, im_info

    def generate_scale(self, im):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
        Returns:
            im_scale_x: the resize ratio of X
            im_scale_y: the resize ratio of Y
        """
        origin_shape = im.shape[:2]
        im_c = im.shape[2]
        if self.keep_ratio:
            im_size_min = np.min(origin_shape)
            im_size_max = np.max(origin_shape)
            target_size_min = np.min(self.target_size)
            target_size_max = np.max(self.target_size)
            im_scale = float(target_size_min) / float(im_size_min)
            if np.round(im_scale * im_size_max) > target_size_max:
                im_scale = float(target_size_max) / float(im_size_max)
            im_scale_x = im_scale
            im_scale_y = im_scale
        else:
            resize_h, resize_w = self.target_size
            im_scale_y = resize_h / float(origin_shape[0])
            im_scale_x = resize_w / float(origin_shape[1])
        return im_scale_y, im_scale_x


class NormalizeImage(object):
    """normalize image
    Args:
        mean (list): im - mean
        std (list): im / std
        is_scale (bool): whether need im / 255
        norm_type (str): type in ['mean_std', 'none']
    """

    def __init__(self, mean, std, is_scale=True, norm_type='mean_std'):
        self.mean = mean
        self.std = std
        self.is_scale = is_scale
        self.norm_type = norm_type

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        im = im.astype(np.float32, copy=False)
        if self.is_scale:
            scale = 1.0 / 255.0
            im *= scale

        if self.norm_type == 'mean_std':
            mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
            std = np.array(self.std)[np.newaxis, np.newaxis, :]
            im -= mean
            im /= std
        return im, im_info


class Permute(object):
    """permute image
    Args:
        to_bgr (bool): whether convert RGB to BGR
        channel_first (bool): whether convert HWC to CHW
    """

    def __init__(self, ):
        super(Permute, self).__init__()

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        im = im.transpose((2, 0, 1)).copy()
        return im, im_info


class PadStride(object):
    """ padding image for model with FPN, instead PadBatch(pad_to_stride) in original config
    Args:
        stride (bool): model with FPN need image shape % stride == 0
    """

    def __init__(self, stride=0):
        self.coarsest_stride = stride

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        coarsest_stride = self.coarsest_stride
        if coarsest_stride <= 0:
            return im, im_info
        im_c, im_h, im_w = im.shape
        pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride)
        pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride)
        padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = im
        return padding_im, im_info


class LetterBoxResize(object):
    def __init__(self, target_size):
        """
        Resize image to target size, convert normalized xywh to pixel xyxy
        format ([x_center, y_center, width, height] -> [x0, y0, x1, y1]).
        Args:
            target_size (int|list): image target size.
        """
        super(LetterBoxResize, self).__init__()
        if isinstance(target_size, int):
            target_size = [target_size, target_size]
        self.target_size = target_size

    def letterbox(self, img, height, width, color=(127.5, 127.5, 127.5)):
        # letterbox: resize a rectangular image to a padded rectangular
        shape = img.shape[:2]  # [height, width]
        ratio_h = float(height) / shape[0]
        ratio_w = float(width) / shape[1]
        ratio = min(ratio_h, ratio_w)
        new_shape = (round(shape[1] * ratio),
                     round(shape[0] * ratio))  # [width, height]
        padw = (width - new_shape[0]) / 2
        padh = (height - new_shape[1]) / 2
        top, bottom = round(padh - 0.1), round(padh + 0.1)
        left, right = round(padw - 0.1), round(padw + 0.1)

        img = cv2.resize(
            img, new_shape, interpolation=cv2.INTER_AREA)  # resized, no border
        img = cv2.copyMakeBorder(
            img, top, bottom, left, right, cv2.BORDER_CONSTANT,
            value=color)  # padded rectangular
        return img, ratio, padw, padh

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        assert len(self.target_size) == 2
        assert self.target_size[0] > 0 and self.target_size[1] > 0
        height, width = self.target_size
        h, w = im.shape[:2]
        im, ratio, padw, padh = self.letterbox(im, height=height, width=width)

        new_shape = [round(h * ratio), round(w * ratio)]
        im_info['im_shape'] = np.array(new_shape, dtype=np.float32)
        im_info['scale_factor'] = np.array([ratio, ratio], dtype=np.float32)
        return im, im_info


class Pad(object):
    def __init__(self, size, fill_value=[114.0, 114.0, 114.0]):
        """
        Pad image to a specified size.
        Args:
            size (list[int]): image target size
            fill_value (list[float]): rgb value of pad area, default (114.0, 114.0, 114.0)
        """
        super(Pad, self).__init__()
        if isinstance(size, int):
            size = [size, size]
        self.size = size
        self.fill_value = fill_value

    def __call__(self, im, im_info):
        im_h, im_w = im.shape[:2]
        h, w = self.size
        if h == im_h and w == im_w:
            im = im.astype(np.float32)
            return im, im_info

        canvas = np.ones((h, w, 3), dtype=np.float32)
        canvas *= np.array(self.fill_value, dtype=np.float32)
        canvas[0:im_h, 0:im_w, :] = im.astype(np.float32)
        im = canvas
        return im, im_info


def rotate_point(pt, angle_rad):
    """Rotate a point by an angle.

    Args:
        pt (list[float]): 2 dimensional point to be rotated
        angle_rad (float): rotation angle by radian

    Returns:
        list[float]: Rotated point.
    """
    assert len(pt) == 2
    sn, cs = np.sin(angle_rad), np.cos(angle_rad)
    new_x = pt[0] * cs - pt[1] * sn
    new_y = pt[0] * sn + pt[1] * cs
    rotated_pt = [new_x, new_y]

    return rotated_pt


def _get_3rd_point(a, b):
    """To calculate the affine matrix, three pairs of points are required. This
    function is used to get the 3rd point, given 2D points a & b.

    The 3rd point is defined by rotating vector `a - b` by 90 degrees
    anticlockwise, using b as the rotation center.

    Args:
        a (np.ndarray): point(x,y)
        b (np.ndarray): point(x,y)

    Returns:
        np.ndarray: The 3rd point.
    """
    assert len(a) == 2
    assert len(b) == 2
    direction = a - b
    third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32)

    return third_pt


def get_affine_transform(center,
                         input_size,
                         rot,
                         output_size,
                         shift=(0., 0.),
                         inv=False):
    """Get the affine transform matrix, given the center/scale/rot/output_size.

    Args:
        center (np.ndarray[2, ]): Center of the bounding box (x, y).
        scale (np.ndarray[2, ]): Scale of the bounding box
            wrt [width, height].
        rot (float): Rotation angle (degree).
        output_size (np.ndarray[2, ]): Size of the destination heatmaps.
        shift (0-100%): Shift translation ratio wrt the width/height.
            Default (0., 0.).
        inv (bool): Option to inverse the affine transform direction.
            (inv=False: src->dst or inv=True: dst->src)

    Returns:
        np.ndarray: The transform matrix.
    """
    assert len(center) == 2
    assert len(output_size) == 2
    assert len(shift) == 2
    if not isinstance(input_size, (np.ndarray, list)):
        input_size = np.array([input_size, input_size], dtype=np.float32)
    scale_tmp = input_size

    shift = np.array(shift)
    src_w = scale_tmp[0]
    dst_w = output_size[0]
    dst_h = output_size[1]

    rot_rad = np.pi * rot / 180
    src_dir = rotate_point([0., src_w * -0.5], rot_rad)
    dst_dir = np.array([0., dst_w * -0.5])

    src = np.zeros((3, 2), dtype=np.float32)
    src[0, :] = center + scale_tmp * shift
    src[1, :] = center + src_dir + scale_tmp * shift
    src[2, :] = _get_3rd_point(src[0, :], src[1, :])

    dst = np.zeros((3, 2), dtype=np.float32)
    dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
    dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
    dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])

    if inv:
        trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
    else:
        trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    return trans


class WarpAffine(object):
    """Warp affine the image
    """

    def __init__(self,
                 keep_res=False,
                 pad=31,
                 input_h=512,
                 input_w=512,
                 scale=0.4,
                 shift=0.1):
        self.keep_res = keep_res
        self.pad = pad
        self.input_h = input_h
        self.input_w = input_w
        self.scale = scale
        self.shift = shift

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        img = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)

        h, w = img.shape[:2]

        if self.keep_res:
            input_h = (h | self.pad) + 1
            input_w = (w | self.pad) + 1
            s = np.array([input_w, input_h], dtype=np.float32)
            c = np.array([w // 2, h // 2], dtype=np.float32)

        else:
            s = max(h, w) * 1.0
            input_h, input_w = self.input_h, self.input_w
            c = np.array([w / 2., h / 2.], dtype=np.float32)

        trans_input = get_affine_transform(c, s, 0, [input_w, input_h])
        img = cv2.resize(img, (w, h))
        inp = cv2.warpAffine(
            img, trans_input, (input_w, input_h), flags=cv2.INTER_LINEAR)
        return inp, im_info


# keypoint preprocess
def get_warp_matrix(theta, size_input, size_dst, size_target):
    """This code is based on
        https://github.com/open-mmlab/mmpose/blob/master/mmpose/core/post_processing/post_transforms.py

        Calculate the transformation matrix under the constraint of unbiased.
    Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
    Data Processing for Human Pose Estimation (CVPR 2020).

    Args:
        theta (float): Rotation angle in degrees.
        size_input (np.ndarray): Size of input image [w, h].
        size_dst (np.ndarray): Size of output image [w, h].
        size_target (np.ndarray): Size of ROI in input plane [w, h].

    Returns:
        matrix (np.ndarray): A matrix for transformation.
    """
    theta = np.deg2rad(theta)
    matrix = np.zeros((2, 3), dtype=np.float32)
    scale_x = size_dst[0] / size_target[0]
    scale_y = size_dst[1] / size_target[1]
    matrix[0, 0] = np.cos(theta) * scale_x
    matrix[0, 1] = -np.sin(theta) * scale_x
    matrix[0, 2] = scale_x * (
        -0.5 * size_input[0] * np.cos(theta) + 0.5 * size_input[1] *
        np.sin(theta) + 0.5 * size_target[0])
    matrix[1, 0] = np.sin(theta) * scale_y
    matrix[1, 1] = np.cos(theta) * scale_y
    matrix[1, 2] = scale_y * (
        -0.5 * size_input[0] * np.sin(theta) - 0.5 * size_input[1] *
        np.cos(theta) + 0.5 * size_target[1])
    return matrix


class TopDownEvalAffine(object):
    """apply affine transform to image and coords

    Args:
        trainsize (list): [w, h], the standard size used to train
        use_udp (bool): whether to use Unbiased Data Processing.
        records(dict): the dict contained the image and coords

    Returns:
        records (dict): contain the image and coords after tranformed

    """

    def __init__(self, trainsize, use_udp=False):
        self.trainsize = trainsize
        self.use_udp = use_udp

    def __call__(self, image, im_info):
        rot = 0
        imshape = im_info['im_shape'][::-1]
        center = im_info['center'] if 'center' in im_info else imshape / 2.
        scale = im_info['scale'] if 'scale' in im_info else imshape
        if self.use_udp:
            trans = get_warp_matrix(
                rot, center * 2.0,
                [self.trainsize[0] - 1.0, self.trainsize[1] - 1.0], scale)
            image = cv2.warpAffine(
                image,
                trans, (int(self.trainsize[0]), int(self.trainsize[1])),
                flags=cv2.INTER_LINEAR)
        else:
            trans = get_affine_transform(center, scale, rot, self.trainsize)
            image = cv2.warpAffine(
                image,
                trans, (int(self.trainsize[0]), int(self.trainsize[1])),
                flags=cv2.INTER_LINEAR)

        return image, im_info


class Compose:
    def __init__(self, transforms):
        self.transforms = []
        for op_info in transforms:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            self.transforms.append(eval(op_type)(**new_op_info))

    def __call__(self, img):
        img, im_info = decode_image(img)
        for t in self.transforms:
            img, im_info = t(img, im_info)
        inputs = copy.deepcopy(im_info)
        inputs['image'] = img
        return inputs