tinypose_128x96.cpp 7.53 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "core/general-server/op/tinypose_128x96.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>

namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;

int tinypose_128x96::inference() {
  VLOG(2) << "Going to run inference";
  const std::vector<std::string> pre_node_names = pre_names();
  if (pre_node_names.size() != 1) {
    LOG(ERROR) << "This op(" << op_name()
               << ") can only have one predecessor op, but received "
               << pre_node_names.size();
    return -1;
  }
  const std::string pre_name = pre_node_names[0];

  const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
  if (!input_blob) {
    LOG(ERROR) << "input_blob is nullptr,error";
    return -1;
  }
  uint64_t log_id = input_blob->GetLogId();
  VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;

  GeneralBlob *output_blob = mutable_data<GeneralBlob>();
  if (!output_blob) {
    LOG(ERROR) << "output_blob is nullptr,error";
    return -1;
  }
  output_blob->SetLogId(log_id);

  if (!input_blob) {
    LOG(ERROR) << "(logid=" << log_id
               << ") Failed mutable depended argument, op:" << pre_name;
    return -1;
  }

  const TensorVector *in = &input_blob->tensor_vector;
  TensorVector *out = &output_blob->tensor_vector;

  int batch_size = input_blob->_batch_size;
  output_blob->_batch_size = batch_size;
  VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;

  Timer timeline;
  int64_t start = timeline.TimeStampUS();
  timeline.Start();

  // only support string type
  char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
  std::string base64str = total_input_ptr;

  cv::Mat img = Base2Mat(base64str);
  cv::cvtColor(img, img, cv::COLOR_BGR2RGB);

  // preprocess
  std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
  preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
                 im_shape_w, mean_, scale_, is_scale_);

  // create real_in
  TensorVector *real_in = new TensorVector();
  if (!real_in) {
    LOG(ERROR) << "real_in is nullptr,error";
    return -1;
  }

  int in_num = 0;
  size_t databuf_size = 0;
  void *databuf_data = NULL;
  char *databuf_char = NULL;

  // image
  in_num = 1 * 3 * im_shape_h * im_shape_w;
  databuf_size = in_num * sizeof(float);

  databuf_data = MempoolWrapper::instance().malloc(databuf_size);
  if (!databuf_data) {
    LOG(ERROR) << "Malloc failed, size: " << databuf_size;
    return -1;
  }

  memcpy(databuf_data, input.data(), databuf_size);
  databuf_char = reinterpret_cast<char *>(databuf_data);
  paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
  paddle::PaddleTensor tensor_in;
  tensor_in.name = "image";
  tensor_in.dtype = paddle::PaddleDType::FLOAT32;
  tensor_in.shape = {1, 3, im_shape_h, im_shape_w};
  tensor_in.lod = in->at(0).lod;
  tensor_in.data = paddleBuf;
  real_in->push_back(tensor_in);

  if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
                                     batch_size)) {
    LOG(ERROR) << "(logid=" << log_id
               << ") Failed do infer in fluid model: " << engine_name().c_str();
    return -1;
  }

  int64_t end = timeline.TimeStampUS();
  CopyBlobInfo(input_blob, output_blob);
  AddBlobInfo(output_blob, start);
  AddBlobInfo(output_blob, end);
  return 0;
}

void tinypose_128x96::preprocess_det(const cv::Mat &img, float *data,
                                     float &scale_factor_h,
                                     float &scale_factor_w, int im_shape_h,
                                     int im_shape_w,
                                     const std::vector<float> &mean,
                                     const std::vector<float> &scale,
                                     const bool is_scale) {
  // Resize
  cv::Mat resize_img;
  cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 1);

  // Normalize
  double e = 1.0;
  if (is_scale) {
    e /= 255.0;
  }
  cv::Mat img_fp;
  (resize_img).convertTo(img_fp, CV_32FC3, e);
  for (int h = 0; h < im_shape_h; h++) {
    for (int w = 0; w < im_shape_w; w++) {
      img_fp.at<cv::Vec3f>(h, w)[0] =
          (img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
      img_fp.at<cv::Vec3f>(h, w)[1] =
          (img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
      img_fp.at<cv::Vec3f>(h, w)[2] =
          (img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
    }
  }

  // Permute
  int rh = img_fp.rows;
  int rw = img_fp.cols;
  int rc = img_fp.channels();
  for (int i = 0; i < rc; ++i) {
    cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
                       i);
  }
}

cv::Mat tinypose_128x96::Base2Mat(std::string &base64_data) {
  cv::Mat img;
  std::string s_mat;
  s_mat = base64Decode(base64_data.data(), base64_data.size());
  std::vector<char> base64_img(s_mat.begin(), s_mat.end());
  img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
  return img;
}

std::string tinypose_128x96::base64Decode(const char *Data, int DataByte) {
  const char DecodeTable[] = {
      0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
      0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
      0,  0,  0,  0,  0,  0,  0,  0,  0,
      62, // '+'
      0,  0,  0,
      63,                                     // '/'
      52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
      0,  0,  0,  0,  0,  0,  0,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9,
      10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
      0,  0,  0,  0,  0,  0,  26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
      37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
  };

  std::string strDecode;
  int nValue;
  int i = 0;
  while (i < DataByte) {
    if (*Data != '\r' && *Data != '\n') {
      nValue = DecodeTable[*Data++] << 18;
      nValue += DecodeTable[*Data++] << 12;
      strDecode += (nValue & 0x00FF0000) >> 16;
      if (*Data != '=') {
        nValue += DecodeTable[*Data++] << 6;
        strDecode += (nValue & 0x0000FF00) >> 8;
        if (*Data != '=') {
          nValue += DecodeTable[*Data++];
          strDecode += nValue & 0x000000FF;
        }
      }
      i += 4;
    } else // 回车换行,跳过
    {
      Data++;
      i++;
    }
  }
  return strDecode;
}

DEFINE_OP(tinypose_128x96);

} // namespace serving
} // namespace paddle_serving
} // namespace baidu