preprocess_op.cc 6.35 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <string>
#include <thread>
#include <vector>

#include "include/preprocess_op.h"

namespace PaddleDetection {

void InitInfo::Run(cv::Mat* im, ImageBlob* data) {
  data->im_shape_ = {static_cast<float>(im->rows),
                     static_cast<float>(im->cols)};
  data->scale_factor_ = {1., 1.};
  data->in_net_shape_ = {static_cast<float>(im->rows),
                         static_cast<float>(im->cols)};
}

void NormalizeImage::Run(cv::Mat* im, ImageBlob* data) {
  double e = 1.0;
  if (is_scale_) {
    e *= 1./255.0;
  }
  (*im).convertTo(*im, CV_32FC3, e);
  for (int h = 0; h < im->rows; h++) {
    for (int w = 0; w < im->cols; w++) {
      im->at<cv::Vec3f>(h, w)[0] =
          (im->at<cv::Vec3f>(h, w)[0] - mean_[0]) / scale_[0];
      im->at<cv::Vec3f>(h, w)[1] =
          (im->at<cv::Vec3f>(h, w)[1] - mean_[1]) / scale_[1];
      im->at<cv::Vec3f>(h, w)[2] =
          (im->at<cv::Vec3f>(h, w)[2] - mean_[2]) / scale_[2];
    }
  }
}

void Permute::Run(cv::Mat* im, ImageBlob* data) {
  (*im).convertTo(*im, CV_32FC3);
  int rh = im->rows;
  int rw = im->cols;
  int rc = im->channels();
  (data->im_data_).resize(rc * rh * rw);
  float* base = (data->im_data_).data();
  for (int i = 0; i < rc; ++i) {
    cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, base + i * rh * rw), i);
  }
}

void Resize::Run(cv::Mat* im, ImageBlob* data) {
  auto resize_scale = GenerateScale(*im);
  data->im_shape_ = {static_cast<float>(im->cols * resize_scale.first),
                     static_cast<float>(im->rows * resize_scale.second)};
  data->in_net_shape_ = {static_cast<float>(im->cols * resize_scale.first),
                         static_cast<float>(im->rows * resize_scale.second)};
  cv::resize(
      *im, *im, cv::Size(), resize_scale.first, resize_scale.second, interp_);
  data->im_shape_ = {
      static_cast<float>(im->rows), static_cast<float>(im->cols),
  };
  data->scale_factor_ = {
      resize_scale.second, resize_scale.first,
  };
}

std::pair<float, float> Resize::GenerateScale(const cv::Mat& im) {
  std::pair<float, float> resize_scale;
  int origin_w = im.cols;
  int origin_h = im.rows;

  if (keep_ratio_) {
    int im_size_max = std::max(origin_w, origin_h);
    int im_size_min = std::min(origin_w, origin_h);
    int target_size_max =
        *std::max_element(target_size_.begin(), target_size_.end());
    int target_size_min =
        *std::min_element(target_size_.begin(), target_size_.end());
    float scale_min =
        static_cast<float>(target_size_min) / static_cast<float>(im_size_min);
    float scale_max =
        static_cast<float>(target_size_max) / static_cast<float>(im_size_max);
    float scale_ratio = std::min(scale_min, scale_max);
    resize_scale = {scale_ratio, scale_ratio};
  } else {
    resize_scale.first =
        static_cast<float>(target_size_[1]) / static_cast<float>(origin_w);
    resize_scale.second =
        static_cast<float>(target_size_[0]) / static_cast<float>(origin_h);
  }
  return resize_scale;
}

void PadStride::Run(cv::Mat* im, ImageBlob* data) {
  if (stride_ <= 0) {
    return;
  }
  int rc = im->channels();
  int rh = im->rows;
  int rw = im->cols;
  int nh = (rh / stride_) * stride_ + (rh % stride_ != 0) * stride_;
  int nw = (rw / stride_) * stride_ + (rw % stride_ != 0) * stride_;
  cv::copyMakeBorder(
      *im, *im, 0, nh - rh, 0, nw - rw, cv::BORDER_CONSTANT, cv::Scalar(0));
  data->in_net_shape_ = {
      static_cast<float>(im->rows), static_cast<float>(im->cols),
  };
}

void TopDownEvalAffine::Run(cv::Mat* im, ImageBlob* data) {
  cv::resize(*im, *im, cv::Size(trainsize_[0], trainsize_[1]), 0, 0, interp_);
  // todo: Simd::ResizeBilinear();
  data->in_net_shape_ = {
      static_cast<float>(trainsize_[1]), static_cast<float>(trainsize_[0]),
  };
}

// Preprocessor op running order
const std::vector<std::string> Preprocessor::RUN_ORDER = {"InitInfo",
                                                          "TopDownEvalAffine",
                                                          "Resize",
                                                          "NormalizeImage",
                                                          "PadStride",
                                                          "Permute"};

void Preprocessor::Run(cv::Mat* im, ImageBlob* data) {
  for (const auto& name : RUN_ORDER) {
    if (ops_.find(name) != ops_.end()) {
      ops_[name]->Run(im, data);
    }
  }
}

void CropImg(cv::Mat& img,
             cv::Mat& crop_img,
             std::vector<int>& area,
             std::vector<float>& center,
             std::vector<float>& scale,
             float expandratio) {
  int crop_x1 = std::max(0, area[0]);
  int crop_y1 = std::max(0, area[1]);
  int crop_x2 = std::min(img.cols - 1, area[2]);
  int crop_y2 = std::min(img.rows - 1, area[3]);
  
  int center_x = (crop_x1 + crop_x2) / 2.;
  int center_y = (crop_y1 + crop_y2) / 2.;
  int half_h = (crop_y2 - crop_y1) / 2.;
  int half_w = (crop_x2 - crop_x1) / 2.;

  if (half_h * 3 > half_w * 4) {
    half_w = static_cast<int>(half_h * 0.75);
  } else {
    half_h = static_cast<int>(half_w * 4 / 3);
  }

  crop_x1 =
      std::max(0, center_x - static_cast<int>(half_w * (1 + expandratio)));
  crop_y1 =
      std::max(0, center_y - static_cast<int>(half_h * (1 + expandratio)));
  crop_x2 = std::min(img.cols - 1,
                     static_cast<int>(center_x + half_w * (1 + expandratio)));
  crop_y2 = std::min(img.rows - 1,
                     static_cast<int>(center_y + half_h * (1 + expandratio)));
  crop_img =
      img(cv::Range(crop_y1, crop_y2 + 1), cv::Range(crop_x1, crop_x2 + 1));

  center.clear();
  center.emplace_back((crop_x1 + crop_x2) / 2);
  center.emplace_back((crop_y1 + crop_y2) / 2);
  scale.clear();
  scale.emplace_back((crop_x2 - crop_x1));
  scale.emplace_back((crop_y2 - crop_y1));
}

}  // namespace PaddleDetection