object_detector.cc 12.1 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
// for setprecision
#include <chrono>
#include <iomanip>
#include "include/object_detector.h"

namespace PaddleDetection {

// Load Model and create model predictor
void ObjectDetector::LoadModel(std::string model_file, int num_theads) {
  MobileConfig config;
  config.set_threads(num_theads);
  config.set_model_from_file(model_file + "/model.nb");
  config.set_power_mode(LITE_POWER_HIGH);

  predictor_ = CreatePaddlePredictor<MobileConfig>(config);
}

// Visualiztion MaskDetector results
cv::Mat VisualizeResult(const cv::Mat& img,
                        const std::vector<PaddleDetection::ObjectResult>& results,
                        const std::vector<std::string>& lables,
                        const std::vector<int>& colormap,
                        const bool is_rbox = false) {
  cv::Mat vis_img = img.clone();
  for (int i = 0; i < results.size(); ++i) {
    // Configure color and text size
    std::ostringstream oss;
    oss << std::setiosflags(std::ios::fixed) << std::setprecision(4);
    oss << lables[results[i].class_id] << " ";
    oss << results[i].confidence;
    std::string text = oss.str();
    int c1 = colormap[3 * results[i].class_id + 0];
    int c2 = colormap[3 * results[i].class_id + 1];
    int c3 = colormap[3 * results[i].class_id + 2];
    cv::Scalar roi_color = cv::Scalar(c1, c2, c3);
    int font_face = cv::FONT_HERSHEY_COMPLEX_SMALL;
    double font_scale = 0.5f;
    float thickness = 0.5;
    cv::Size text_size =
        cv::getTextSize(text, font_face, font_scale, thickness, nullptr);
    cv::Point origin;

    if (is_rbox) {
      // Draw object, text, and background
      for (int k = 0; k < 4; k++) {
        cv::Point pt1 = cv::Point(results[i].rect[(k * 2) % 8],
                                  results[i].rect[(k * 2 + 1) % 8]);
        cv::Point pt2 = cv::Point(results[i].rect[(k * 2 + 2) % 8],
                                  results[i].rect[(k * 2 + 3) % 8]);
        cv::line(vis_img, pt1, pt2, roi_color, 2);
      }
    } else {
      int w = results[i].rect[2] - results[i].rect[0];
      int h = results[i].rect[3] - results[i].rect[1];
      cv::Rect roi = cv::Rect(results[i].rect[0], results[i].rect[1], w, h);
      // Draw roi object, text, and background
      cv::rectangle(vis_img, roi, roi_color, 2);
    }

    origin.x = results[i].rect[0];
    origin.y = results[i].rect[1];

    // Configure text background
    cv::Rect text_back = cv::Rect(results[i].rect[0],
                                  results[i].rect[1] - text_size.height,
                                  text_size.width,
                                  text_size.height);
    // Draw text, and background
    cv::rectangle(vis_img, text_back, roi_color, -1);
    cv::putText(vis_img,
                text,
                origin,
                font_face,
                font_scale,
                cv::Scalar(255, 255, 255),
                thickness);
  }
  return vis_img;
}

void ObjectDetector::Preprocess(const cv::Mat& ori_im) {
  // Clone the image : keep the original mat for postprocess
  cv::Mat im = ori_im.clone();
  cv::cvtColor(im, im, cv::COLOR_BGR2RGB);
  preprocessor_.Run(&im, &inputs_);
}

void ObjectDetector::Postprocess(const std::vector<cv::Mat> mats,
                                 std::vector<PaddleDetection::ObjectResult>* result,
                                 std::vector<int> bbox_num,
                                 bool is_rbox = false) {
  result->clear();
  int start_idx = 0;
  for (int im_id = 0; im_id < mats.size(); im_id++) {
    cv::Mat raw_mat = mats[im_id];
    int rh = 1;
    int rw = 1;
    if (config_.arch_ == "Face") {
      rh = raw_mat.rows;
      rw = raw_mat.cols;
    }
    for (int j = start_idx; j < start_idx + bbox_num[im_id]; j++) {
      if (is_rbox) {
        // Class id
        int class_id = static_cast<int>(round(output_data_[0 + j * 10]));
        // Confidence score
        float score = output_data_[1 + j * 10];
        int x1 = (output_data_[2 + j * 10] * rw);
        int y1 = (output_data_[3 + j * 10] * rh);
        int x2 = (output_data_[4 + j * 10] * rw);
        int y2 = (output_data_[5 + j * 10] * rh);
        int x3 = (output_data_[6 + j * 10] * rw);
        int y3 = (output_data_[7 + j * 10] * rh);
        int x4 = (output_data_[8 + j * 10] * rw);
        int y4 = (output_data_[9 + j * 10] * rh);

        PaddleDetection::ObjectResult result_item;
        result_item.rect = {x1, y1, x2, y2, x3, y3, x4, y4};
        result_item.class_id = class_id;
        result_item.confidence = score;
        result->push_back(result_item);
      } else {
        // Class id
        int class_id = static_cast<int>(round(output_data_[0 + j * 6]));
        // Confidence score
        float score = output_data_[1 + j * 6];
        int xmin = (output_data_[2 + j * 6] * rw);
        int ymin = (output_data_[3 + j * 6] * rh);
        int xmax = (output_data_[4 + j * 6] * rw);
        int ymax = (output_data_[5 + j * 6] * rh);
        int wd = xmax - xmin;
        int hd = ymax - ymin;

        PaddleDetection::ObjectResult result_item;
        result_item.rect = {xmin, ymin, xmax, ymax};
        result_item.class_id = class_id;
        result_item.confidence = score;
        result->push_back(result_item);
      }
    }
    start_idx += bbox_num[im_id];
  }
}

void ObjectDetector::Predict(const std::vector<cv::Mat>& imgs,
                             const double threshold,
                             const int warmup,
                             const int repeats,
                             std::vector<PaddleDetection::ObjectResult>* result,
                             std::vector<int>* bbox_num,
                             std::vector<double>* times) {
  auto preprocess_start = std::chrono::steady_clock::now();
  int batch_size = imgs.size();

  // in_data_batch
  std::vector<float> in_data_all;
  std::vector<float> im_shape_all(batch_size * 2);
  std::vector<float> scale_factor_all(batch_size * 2);
  // Preprocess image
  for (int bs_idx = 0; bs_idx < batch_size; bs_idx++) {
    cv::Mat im = imgs.at(bs_idx);
    Preprocess(im);
    im_shape_all[bs_idx * 2] = inputs_.im_shape_[0];
    im_shape_all[bs_idx * 2 + 1] = inputs_.im_shape_[1];

    scale_factor_all[bs_idx * 2] = inputs_.scale_factor_[0];
    scale_factor_all[bs_idx * 2 + 1] = inputs_.scale_factor_[1];

    // TODO: reduce cost time
    in_data_all.insert(
        in_data_all.end(), inputs_.im_data_.begin(), inputs_.im_data_.end());
  }
  auto preprocess_end = std::chrono::steady_clock::now();
  std::vector<const float *> output_data_list_;
  // Prepare input tensor

  auto input_names = predictor_->GetInputNames();
  for (const auto& tensor_name : input_names) {
    auto in_tensor = predictor_->GetInputByName(tensor_name);
    if (tensor_name == "image") {
      int rh = inputs_.in_net_shape_[0];
      int rw = inputs_.in_net_shape_[1];
      in_tensor->Resize({batch_size, 3, rh, rw});
      auto* inptr = in_tensor->mutable_data<float>();
      std::copy_n(in_data_all.data(), in_data_all.size(), inptr);
    } else if (tensor_name == "im_shape") {
      in_tensor->Resize({batch_size, 2});
      auto* inptr = in_tensor->mutable_data<float>();
      std::copy_n(im_shape_all.data(), im_shape_all.size(), inptr);
    } else if (tensor_name == "scale_factor") {
      in_tensor->Resize({batch_size, 2});
      auto* inptr = in_tensor->mutable_data<float>();
      std::copy_n(scale_factor_all.data(), scale_factor_all.size(), inptr);
    }
  }

  // Run predictor
  // warmup
  for (int i = 0; i < warmup; i++) {
    predictor_->Run();
    // Get output tensor
    auto output_names = predictor_->GetOutputNames();
    if (config_.arch_ == "PicoDet") {
      for (int j = 0; j < output_names.size(); j++) {
        auto output_tensor = predictor_->GetTensor(output_names[j]);
        const float* outptr = output_tensor->data<float>();
        std::vector<int64_t> output_shape = output_tensor->shape();
        output_data_list_.push_back(outptr);
      }
    } else {
      auto out_tensor = predictor_->GetTensor(output_names[0]);
      auto out_bbox_num = predictor_->GetTensor(output_names[1]);
    }
  }

  bool is_rbox = false;
  auto inference_start = std::chrono::steady_clock::now();
  for (int i = 0; i < repeats; i++) {
    predictor_->Run();
  }
  auto inference_end = std::chrono::steady_clock::now();
  auto postprocess_start = std::chrono::steady_clock::now();
  // Get output tensor
  output_data_list_.clear();
  int num_class = 80;
  int reg_max = 7;
  auto output_names = predictor_->GetOutputNames();
  // TODO: Unified model output.
  if (config_.arch_ == "PicoDet") {
    for (int i = 0; i < output_names.size(); i++) {
      auto output_tensor = predictor_->GetTensor(output_names[i]);
      const float* outptr = output_tensor->data<float>();
      std::vector<int64_t> output_shape = output_tensor->shape();
      if (i == 0) {
        num_class = output_shape[2];
      }
      if (i == config_.fpn_stride_.size()) {
        reg_max = output_shape[2] / 4 - 1;
      }
      output_data_list_.push_back(outptr);
    }
  } else {
    auto output_tensor = predictor_->GetTensor(output_names[0]);
    auto output_shape = output_tensor->shape();
    auto out_bbox_num = predictor_->GetTensor(output_names[1]);
    auto out_bbox_num_shape = out_bbox_num->shape();
    // Calculate output length
    int output_size = 1;
    for (int j = 0; j < output_shape.size(); ++j) {
      output_size *= output_shape[j];
    }
    is_rbox = output_shape[output_shape.size() - 1] % 10 == 0;

    if (output_size < 6) {
      std::cerr << "[WARNING] No object detected." << std::endl;
    }
    output_data_.resize(output_size);
    std::copy_n(
        output_tensor->mutable_data<float>(), output_size, output_data_.data());

    int out_bbox_num_size = 1;
    for (int j = 0; j < out_bbox_num_shape.size(); ++j) {
      out_bbox_num_size *= out_bbox_num_shape[j];
    }
    out_bbox_num_data_.resize(out_bbox_num_size);
    std::copy_n(out_bbox_num->mutable_data<int>(),
                out_bbox_num_size,
                out_bbox_num_data_.data());
  }
  // Postprocessing result
  result->clear();
  if (config_.arch_ == "PicoDet") {
    PaddleDetection::PicoDetPostProcess(
        result, output_data_list_, config_.fpn_stride_, 
        inputs_.im_shape_, inputs_.scale_factor_,
        config_.nms_info_["score_threshold"].as<float>(), 
        config_.nms_info_["nms_threshold"].as<float>(), num_class, reg_max);
    bbox_num->push_back(result->size());
  } else {
    Postprocess(imgs, result, out_bbox_num_data_, is_rbox);
    bbox_num->clear();
    for (int k = 0; k < out_bbox_num_data_.size(); k++) {
      int tmp = out_bbox_num_data_[k];
      bbox_num->push_back(tmp);
    }
  }
  auto postprocess_end = std::chrono::steady_clock::now();

  std::chrono::duration<float> preprocess_diff =
      preprocess_end - preprocess_start;
  times->push_back(double(preprocess_diff.count() * 1000));
  std::chrono::duration<float> inference_diff = inference_end - inference_start;
  times->push_back(double(inference_diff.count() / repeats * 1000));
  std::chrono::duration<float> postprocess_diff =
      postprocess_end - postprocess_start;
  times->push_back(double(postprocess_diff.count() * 1000));
}

std::vector<int> GenerateColorMap(int num_class) {
  auto colormap = std::vector<int>(3 * num_class, 0);
  for (int i = 0; i < num_class; ++i) {
    int j = 0;
    int lab = i;
    while (lab) {
      colormap[i * 3] |= (((lab >> 0) & 1) << (7 - j));
      colormap[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j));
      colormap[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j));
      ++j;
      lab >>= 3;
    }
  }
  return colormap;
}

}  // namespace PaddleDetection