main.cc 14.8 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <math.h>
#include <stdarg.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <algorithm>
#include <iostream>
#include <numeric>
#include <string>
#include <vector>

#include "include/config_parser.h"
#include "include/keypoint_detector.h"
#include "include/object_detector.h"
#include "include/preprocess_op.h"
#include "json/json.h"

Json::Value RT_Config;

void PrintBenchmarkLog(std::vector<double> det_time, int img_num) {
  std::cout << "----------------------- Config info -----------------------"
            << std::endl;
  std::cout << "num_threads: " << RT_Config["cpu_threads"].as<int>()
            << std::endl;
  std::cout << "----------------------- Data info -----------------------"
            << std::endl;
  std::cout << "batch_size_det: " << RT_Config["batch_size_det"].as<int>()
            << std::endl;
  std::cout << "----------------------- Model info -----------------------"
            << std::endl;
  RT_Config["model_dir_det"].as<std::string>().erase(
      RT_Config["model_dir_det"].as<std::string>().find_last_not_of("/") + 1);
  std::cout << "detection model_name: "
            << RT_Config["model_dir_det"].as<std::string>() << std::endl;
  std::cout << "----------------------- Perf info ------------------------"
            << std::endl;
  std::cout << "Total number of predicted data: " << img_num
            << " and total time spent(ms): "
            << std::accumulate(det_time.begin(), det_time.end(), 0.)
            << std::endl;
  img_num = std::max(1, img_num);
  std::cout << "preproce_time(ms): " << det_time[0] / img_num
            << ", inference_time(ms): " << det_time[1] / img_num
            << ", postprocess_time(ms): " << det_time[2] / img_num << std::endl;
}

void PrintKptsBenchmarkLog(std::vector<double> det_time, int img_num) {
  std::cout << "----------------------- Data info -----------------------"
            << std::endl;
  std::cout << "batch_size_keypoint: "
            << RT_Config["batch_size_keypoint"].as<int>() << std::endl;
  std::cout << "----------------------- Model info -----------------------"
            << std::endl;
  RT_Config["model_dir_keypoint"].as<std::string>().erase(
      RT_Config["model_dir_keypoint"].as<std::string>().find_last_not_of("/") +
      1);
  std::cout << "keypoint model_name: "
            << RT_Config["model_dir_keypoint"].as<std::string>() << std::endl;
  std::cout << "----------------------- Perf info ------------------------"
            << std::endl;
  std::cout << "Total number of predicted data: " << img_num
            << " and total time spent(ms): "
            << std::accumulate(det_time.begin(), det_time.end(), 0.)
            << std::endl;
  img_num = std::max(1, img_num);
  std::cout << "Average time cost per person:" << std::endl
            << "preproce_time(ms): " << det_time[0] / img_num
            << ", inference_time(ms): " << det_time[1] / img_num
            << ", postprocess_time(ms): " << det_time[2] / img_num << std::endl;
}

void PrintTotalIimeLog(double det_time,
                       double keypoint_time,
                       double crop_time) {
  std::cout << "----------------------- Time info ------------------------"
            << std::endl;
  std::cout << "Total Pipeline time(ms) per image: "
            << det_time + keypoint_time + crop_time << std::endl;
  std::cout << "Average det time(ms) per image: " << det_time
            << ", average keypoint time(ms) per image: " << keypoint_time
            << ", average crop time(ms) per image: " << crop_time << std::endl;
}

static std::string DirName(const std::string& filepath) {
  auto pos = filepath.rfind(OS_PATH_SEP);
  if (pos == std::string::npos) {
    return "";
  }
  return filepath.substr(0, pos);
}

static bool PathExists(const std::string& path) {
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
}

static void MkDir(const std::string& path) {
  if (PathExists(path)) return;
  int ret = 0;
  ret = mkdir(path.c_str(), 0755);
  if (ret != 0) {
    std::string path_error(path);
    path_error += " mkdir failed!";
    throw std::runtime_error(path_error);
  }
}

static void MkDirs(const std::string& path) {
  if (path.empty()) return;
  if (PathExists(path)) return;

  MkDirs(DirName(path));
  MkDir(path);
}

void PredictImage(const std::vector<std::string> all_img_paths,
                  const int batch_size_det,
                  const double threshold_det,
                  const bool run_benchmark,
                  PaddleDetection::ObjectDetector* det,
                  PaddleDetection::KeyPointDetector* keypoint,
                  const std::string& output_dir = "output") {
  std::vector<double> det_t = {0, 0, 0};
  int steps = ceil(static_cast<float>(all_img_paths.size()) / batch_size_det);
  int kpts_imgs = 0;
  std::vector<double> keypoint_t = {0, 0, 0};
  double midtimecost = 0;
  for (int idx = 0; idx < steps; idx++) {
    std::vector<cv::Mat> batch_imgs;
    int left_image_cnt = all_img_paths.size() - idx * batch_size_det;
    if (left_image_cnt > batch_size_det) {
      left_image_cnt = batch_size_det;
    }
    for (int bs = 0; bs < left_image_cnt; bs++) {
      std::string image_file_path = all_img_paths.at(idx * batch_size_det + bs);
      cv::Mat im = cv::imread(image_file_path, 1);
      batch_imgs.insert(batch_imgs.end(), im);
    }
    // Store all detected result
    std::vector<PaddleDetection::ObjectResult> result;
    std::vector<int> bbox_num;
    std::vector<double> det_times;

    // Store keypoint results
    std::vector<PaddleDetection::KeyPointResult> result_kpts;
    std::vector<cv::Mat> imgs_kpts;
    std::vector<std::vector<float>> center_bs;
    std::vector<std::vector<float>> scale_bs;
    std::vector<int> colormap_kpts = PaddleDetection::GenerateColorMap(20);
    bool is_rbox = false;
    if (run_benchmark) {
      det->Predict(
          batch_imgs, threshold_det, 50, 50, &result, &bbox_num, &det_times);
    } else {
      det->Predict(
          batch_imgs, threshold_det, 0, 1, &result, &bbox_num, &det_times);
    }

    // get labels and colormap
    auto labels = det->GetLabelList();
    auto colormap = PaddleDetection::GenerateColorMap(labels.size());
    int item_start_idx = 0;
    for (int i = 0; i < left_image_cnt; i++) {
      cv::Mat im = batch_imgs[i];
      std::vector<PaddleDetection::ObjectResult> im_result;
      int detect_num = 0;
      for (int j = 0; j < bbox_num[i]; j++) {
        PaddleDetection::ObjectResult item = result[item_start_idx + j];
        if (item.confidence < threshold_det || item.class_id == -1) {
          continue;
        }
        detect_num += 1;
        im_result.push_back(item);
        if (item.rect.size() > 6) {
          is_rbox = true;
          printf("class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n",
                 item.class_id,
                 item.confidence,
                 item.rect[0],
                 item.rect[1],
                 item.rect[2],
                 item.rect[3],
                 item.rect[4],
                 item.rect[5],
                 item.rect[6],
                 item.rect[7]);
        } else {
          printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n",
                 item.class_id,
                 item.confidence,
                 item.rect[0],
                 item.rect[1],
                 item.rect[2],
                 item.rect[3]);
        }
      }
      std::cout << all_img_paths.at(idx * batch_size_det + i)
                << " The number of detected box: " << detect_num << std::endl;
      item_start_idx = item_start_idx + bbox_num[i];

      std::vector<int> compression_params;
      compression_params.push_back(cv::IMWRITE_JPEG_QUALITY);
      compression_params.push_back(95);
      std::string output_path(output_dir);
      if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) {
        output_path += OS_PATH_SEP;
      }
      std::string image_file_path = all_img_paths.at(idx * batch_size_det + i);
      if (keypoint) {
        int imsize = im_result.size();
        for (int i = 0; i < imsize; i++) {
          auto keypoint_start_time = std::chrono::steady_clock::now();
          auto item = im_result[i];
          cv::Mat crop_img;
          std::vector<double> keypoint_times;
          std::vector<int> rect = {
              item.rect[0], item.rect[1], item.rect[2], item.rect[3]};
          std::vector<float> center;
          std::vector<float> scale;
          if (item.class_id == 0) {
            PaddleDetection::CropImg(im, crop_img, rect, center, scale);
            center_bs.emplace_back(center);
            scale_bs.emplace_back(scale);
            imgs_kpts.emplace_back(crop_img);
            kpts_imgs += 1;
          }
          auto keypoint_crop_time = std::chrono::steady_clock::now();

          std::chrono::duration<float> midtimediff =
              keypoint_crop_time - keypoint_start_time;
          midtimecost += static_cast<double>(midtimediff.count() * 1000);

          if (imgs_kpts.size() == RT_Config["batch_size_keypoint"].as<int>() ||
              ((i == imsize - 1) && !imgs_kpts.empty())) {
            if (run_benchmark) {
              keypoint->Predict(imgs_kpts,
                                center_bs,
                                scale_bs,
                                10,
                                10,
                                &result_kpts,
                                &keypoint_times);
            } else {
              keypoint->Predict(imgs_kpts,
                                center_bs,
                                scale_bs,
                                0,
                                1,
                                &result_kpts,
                                &keypoint_times);
            }
            imgs_kpts.clear();
            center_bs.clear();
            scale_bs.clear();
            keypoint_t[0] += keypoint_times[0];
            keypoint_t[1] += keypoint_times[1];
            keypoint_t[2] += keypoint_times[2];
          }
        }
        std::string kpts_savepath =
            output_path + "keypoint_" +
            image_file_path.substr(image_file_path.find_last_of('/') + 1);
        cv::Mat kpts_vis_img = VisualizeKptsResult(
            im, result_kpts, colormap_kpts, keypoint->get_threshold());
        cv::imwrite(kpts_savepath, kpts_vis_img, compression_params);
        printf("Visualized output saved as %s\n", kpts_savepath.c_str());
      } else {
        // Visualization result
        cv::Mat vis_img = PaddleDetection::VisualizeResult(
            im, im_result, labels, colormap, is_rbox);
        std::string det_savepath =
            output_path + "result_" +
            image_file_path.substr(image_file_path.find_last_of('/') + 1);
        cv::imwrite(det_savepath, vis_img, compression_params);
        printf("Visualized output saved as %s\n", det_savepath.c_str());
      }
    }

    det_t[0] += det_times[0];
    det_t[1] += det_times[1];
    det_t[2] += det_times[2];
  }
  PrintBenchmarkLog(det_t, all_img_paths.size());
  if (keypoint) {
    PrintKptsBenchmarkLog(keypoint_t, kpts_imgs);
    PrintTotalIimeLog(
        (det_t[0] + det_t[1] + det_t[2]) / all_img_paths.size(),
        (keypoint_t[0] + keypoint_t[1] + keypoint_t[2]) / all_img_paths.size(),
        midtimecost / all_img_paths.size());
  }
}

int main(int argc, char** argv) {
  std::cout << "Usage: " << argv[0] << " [config_path] [image_dir](option)\n";
  if (argc < 2) {
    std::cout << "Usage: ./main det_runtime_config.json" << std::endl;
    return -1;
  }
  std::string config_path = argv[1];
  std::string img_path = "";

  if (argc >= 3) {
    img_path = argv[2];
  }
  // Parsing command-line
  PaddleDetection::load_jsonf(config_path, RT_Config);
  if (RT_Config["model_dir_det"].as<std::string>().empty()) {
    std::cout << "Please set [model_det_dir] in " << config_path << std::endl;
    return -1;
  }
  if (RT_Config["image_file"].as<std::string>().empty() &&
      RT_Config["image_dir"].as<std::string>().empty() && img_path.empty()) {
    std::cout << "Please set [image_file] or [image_dir] in " << config_path
              << " Or use command: <" << argv[0] << " [image_dir]>"
              << std::endl;
    return -1;
  }
  if (!img_path.empty()) {
    std::cout << "Use image_dir in command line overide the path in config file"
              << std::endl;
    RT_Config["image_dir"] = img_path;
    RT_Config["image_file"] = "";
  }
  // Load model and create a object detector
  PaddleDetection::ObjectDetector det(
      RT_Config["model_dir_det"].as<std::string>(),
      RT_Config["cpu_threads"].as<int>(),
      RT_Config["batch_size_det"].as<int>());

  PaddleDetection::KeyPointDetector* keypoint = nullptr;
  if (!RT_Config["model_dir_keypoint"].as<std::string>().empty()) {
    keypoint = new PaddleDetection::KeyPointDetector(
        RT_Config["model_dir_keypoint"].as<std::string>(),
        RT_Config["cpu_threads"].as<int>(),
        RT_Config["batch_size_keypoint"].as<int>(),
        RT_Config["use_dark_decode"].as<bool>());
    RT_Config["batch_size_det"] = 1;
    printf(
        "batchsize of detection forced to be 1 while keypoint model is not "
        "empty()");
  }
  // Do inference on input image

  if (!RT_Config["image_file"].as<std::string>().empty() ||
      !RT_Config["image_dir"].as<std::string>().empty()) {
    if (!PathExists(RT_Config["output_dir"].as<std::string>())) {
      MkDirs(RT_Config["output_dir"].as<std::string>());
    }
    std::vector<std::string> all_img_paths;
    std::vector<cv::String> cv_all_img_paths;
    if (!RT_Config["image_file"].as<std::string>().empty()) {
      all_img_paths.push_back(RT_Config["image_file"].as<std::string>());
      if (RT_Config["batch_size_det"].as<int>() > 1) {
        std::cout << "batch_size_det should be 1, when set `image_file`."
                  << std::endl;
        return -1;
      }
    } else {
      cv::glob(RT_Config["image_dir"].as<std::string>(), cv_all_img_paths);
      for (const auto& img_path : cv_all_img_paths) {
        all_img_paths.push_back(img_path);
      }
    }
    PredictImage(all_img_paths,
                 RT_Config["batch_size_det"].as<int>(),
                 RT_Config["threshold_det"].as<float>(),
                 RT_Config["run_benchmark"].as<bool>(),
                 &det,
                 keypoint,
                 RT_Config["output_dir"].as<std::string>());
  }
  delete keypoint;
  keypoint = nullptr;
  return 0;
}