keypoint_postprocess.cc 8.83 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "include/keypoint_postprocess.h"
#define PI 3.1415926535
#define HALF_CIRCLE_DEGREE 180

cv::Point2f get_3rd_point(cv::Point2f& a, cv::Point2f& b) {
  cv::Point2f direct{a.x - b.x, a.y - b.y};
  return cv::Point2f(a.x - direct.y, a.y + direct.x);
}

std::vector<float> get_dir(float src_point_x,
                           float src_point_y,
                           float rot_rad) {
  float sn = sin(rot_rad);
  float cs = cos(rot_rad);
  std::vector<float> src_result{0.0, 0.0};
  src_result[0] = src_point_x * cs - src_point_y * sn;
  src_result[1] = src_point_x * sn + src_point_y * cs;
  return src_result;
}

void affine_tranform(
    float pt_x, float pt_y, cv::Mat& trans, std::vector<float>& preds, int p) {
  double new1[3] = {pt_x, pt_y, 1.0};
  cv::Mat new_pt(3, 1, trans.type(), new1);
  cv::Mat w = trans * new_pt;
  preds[p * 3 + 1] = static_cast<float>(w.at<double>(0, 0));
  preds[p * 3 + 2] = static_cast<float>(w.at<double>(1, 0));
}

void get_affine_transform(std::vector<float>& center,
                          std::vector<float>& scale,
                          float rot,
                          std::vector<int>& output_size,
                          cv::Mat& trans,
                          int inv) {
  float src_w = scale[0];
  float dst_w = static_cast<float>(output_size[0]);
  float dst_h = static_cast<float>(output_size[1]);
  float rot_rad = rot * PI / HALF_CIRCLE_DEGREE;
  std::vector<float> src_dir = get_dir(-0.5 * src_w, 0, rot_rad);
  std::vector<float> dst_dir{static_cast<float>(-0.5) * dst_w, 0.0};
  cv::Point2f srcPoint2f[3], dstPoint2f[3];
  srcPoint2f[0] = cv::Point2f(center[0], center[1]);
  srcPoint2f[1] = cv::Point2f(center[0] + src_dir[0], center[1] + src_dir[1]);
  srcPoint2f[2] = get_3rd_point(srcPoint2f[0], srcPoint2f[1]);

  dstPoint2f[0] = cv::Point2f(dst_w * 0.5, dst_h * 0.5);
  dstPoint2f[1] =
      cv::Point2f(dst_w * 0.5 + dst_dir[0], dst_h * 0.5 + dst_dir[1]);
  dstPoint2f[2] = get_3rd_point(dstPoint2f[0], dstPoint2f[1]);
  if (inv == 0) {
    trans = cv::getAffineTransform(srcPoint2f, dstPoint2f);
  } else {
    trans = cv::getAffineTransform(dstPoint2f, srcPoint2f);
  }
}

void transform_preds(std::vector<float>& coords,
                     std::vector<float>& center,
                     std::vector<float>& scale,
                     std::vector<int>& output_size,
                     std::vector<int64_t>& dim,
                     std::vector<float>& target_coords,
                     bool affine=false) {
  if (affine) {
    cv::Mat trans(2, 3, CV_64FC1);
    get_affine_transform(center, scale, 0, output_size, trans, 1);
    for (int p = 0; p < dim[1]; ++p) {
      affine_tranform(
          coords[p * 2], coords[p * 2 + 1], trans, target_coords, p);
    }
  } else {
    float heat_w = static_cast<float>(output_size[0]);
    float heat_h = static_cast<float>(output_size[1]);
    float x_scale = scale[0] / heat_w;
    float y_scale = scale[1] / heat_h;
    float offset_x = center[0] - scale[0] / 2.;
    float offset_y = center[1] - scale[1] / 2.;
    for (int i = 0; i < dim[1]; i++) {
      target_coords[i * 3 + 1] = x_scale * coords[i * 2] + offset_x;
      target_coords[i * 3 + 2] = y_scale * coords[i * 2 + 1] + offset_y;
    }
  }
}

// only for batchsize == 1
void get_max_preds(std::vector<float>& heatmap,
                   std::vector<int>& dim,
                   std::vector<float>& preds,
                   std::vector<float>& maxvals,
                   int batchid,
                   int joint_idx) {
  int num_joints = dim[1];
  int width = dim[3];
  std::vector<int> idx;
  idx.resize(num_joints * 2);

  for (int j = 0; j < dim[1]; j++) {
    float* index = &(
        heatmap[batchid * num_joints * dim[2] * dim[3] + j * dim[2] * dim[3]]);
    float* end = index + dim[2] * dim[3];
    float* max_dis = std::max_element(index, end);
    auto max_id = std::distance(index, max_dis);
    maxvals[j] = *max_dis;
    if (*max_dis > 0) {
      preds[j * 2] = static_cast<float>(max_id % width);
      preds[j * 2 + 1] = static_cast<float>(max_id / width);
    }
  }
}


void dark_parse(std::vector<float>& heatmap,
                std::vector<int64_t>& dim,
                std::vector<float>& coords,
                int px, 
                int py, 
                int index,
                int ch){
  /*DARK postpocessing, Zhang et al. Distribution-Aware Coordinate
  Representation for Human Pose Estimation (CVPR 2020).
  1) offset = - hassian.inv() * derivative
  2) dx = (heatmap[x+1] - heatmap[x-1])/2.
  3) dxx = (dx[x+1] - dx[x-1])/2.
  4) derivative = Mat([dx, dy])
  5) hassian = Mat([[dxx, dxy], [dxy, dyy]])
  */
  std::vector<float>::const_iterator first1 = heatmap.begin() + index;
  std::vector<float>::const_iterator last1 = heatmap.begin() + index + dim[2] * dim[3];
  std::vector<float> heatmap_ch(first1, last1);
  cv::Mat heatmap_mat = cv::Mat(heatmap_ch).reshape(0,dim[2]);
  heatmap_mat.convertTo(heatmap_mat, CV_32FC1);
  cv::GaussianBlur(heatmap_mat, heatmap_mat, cv::Size(3, 3), 0, 0);
  heatmap_mat = heatmap_mat.reshape(1,1);
  heatmap_ch = std::vector<float>(heatmap_mat.reshape(1,1));

  float epsilon = 1e-10;
  //sample heatmap to get values in around target location
  float xy = log(fmax(heatmap_ch[py * dim[3] + px], epsilon));
  float xr = log(fmax(heatmap_ch[py * dim[3] + px + 1], epsilon));
  float xl = log(fmax(heatmap_ch[py * dim[3] + px - 1], epsilon));

  float xr2 = log(fmax(heatmap_ch[py * dim[3] + px + 2], epsilon));
  float xl2 = log(fmax(heatmap_ch[py * dim[3] + px - 2], epsilon));
  float yu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px], epsilon));
  float yd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px], epsilon));
  float yu2 = log(fmax(heatmap_ch[(py + 2) * dim[3] + px], epsilon));
  float yd2 = log(fmax(heatmap_ch[(py - 2) * dim[3] + px], epsilon));
  float xryu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px + 1], epsilon));
  float xryd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px + 1], epsilon));
  float xlyu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px - 1], epsilon));
  float xlyd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px - 1], epsilon));

  //compute dx/dy and dxx/dyy with sampled values
  float dx = 0.5 * (xr - xl);
  float dy = 0.5 * (yu - yd);
  float dxx = 0.25 * (xr2 - 2*xy + xl2);
  float dxy = 0.25 * (xryu - xryd - xlyu + xlyd);
  float dyy = 0.25 * (yu2 - 2*xy + yd2);

  //finally get offset by derivative and hassian, which combined by dx/dy and dxx/dyy
  if(dxx * dyy - dxy*dxy != 0){
    float M[2][2] = {dxx, dxy, dxy, dyy};
    float D[2] = {dx, dy};
    cv::Mat hassian(2,2,CV_32F,M);
    cv::Mat derivative(2,1,CV_32F,D);
    cv::Mat offset = - hassian.inv() * derivative;
    coords[ch * 2] += offset.at<float>(0,0);
    coords[ch * 2 + 1] += offset.at<float>(1,0);
  }
}

void get_final_preds(std::vector<float>& heatmap,
                     std::vector<int64_t>& dim,
                     std::vector<int64_t>& idxout,
                     std::vector<int64_t>& idxdim,
                     std::vector<float>& center,
                     std::vector<float> scale,
                     std::vector<float>& preds,
                     int batchid,
                     bool DARK) {
  std::vector<float> coords;
  coords.resize(dim[1] * 2);
  int heatmap_height = dim[2];
  int heatmap_width = dim[3];

  for (int j = 0; j < dim[1]; ++j) {
    int index = (batchid * dim[1] + j) * dim[2] * dim[3];

    int idx = idxout[batchid * dim[1] + j];
    preds[j * 3] = heatmap[index + idx];
    coords[j * 2] = idx % heatmap_width;
    coords[j * 2 + 1] = idx / heatmap_width;

    int px = int(coords[j * 2] + 0.5);
    int py = int(coords[j * 2 + 1] + 0.5);

    if(DARK && px > 1 && px < heatmap_width - 2){
      dark_parse(heatmap, dim, coords, px, py, index, j);
    }
    else{
      if (px > 0 && px < heatmap_width - 1) {
        float diff_x = heatmap[index + py * dim[3] + px + 1] -
                      heatmap[index + py * dim[3] + px - 1];
        coords[j * 2] += diff_x > 0 ? 1 : -1 * 0.25;
      }
      if (py > 0 && py < heatmap_height - 1) {
        float diff_y = heatmap[index + (py + 1) * dim[3] + px] -
                      heatmap[index + (py - 1) * dim[3] + px];
        coords[j * 2 + 1] += diff_y > 0 ? 1 : -1 * 0.25;
      }
    }
  }
  
  std::vector<int> img_size{heatmap_width, heatmap_height};
  transform_preds(coords, center, scale, img_size, dim, preds);
}