keypoint_detector.cc 8.19 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
// for setprecision
#include <chrono>
#include <iomanip>
#include "include/keypoint_detector.h"

namespace PaddleDetection {

// Load Model and create model predictor
void KeyPointDetector::LoadModel(std::string model_file, int num_theads) {
  MobileConfig config;
  config.set_threads(num_theads);
  config.set_model_from_file(model_file + "/model.nb");
  config.set_power_mode(LITE_POWER_HIGH);

  predictor_ = std::move(CreatePaddlePredictor<MobileConfig>(config));
}

// Visualiztion MaskDetector results
cv::Mat VisualizeKptsResult(const cv::Mat& img,
                            const std::vector<KeyPointResult>& results,
                            const std::vector<int>& colormap,
                            float threshold) {
  const int edge[][2] = {{0, 1},
                         {0, 2},
                         {1, 3},
                         {2, 4},
                         {3, 5},
                         {4, 6},
                         {5, 7},
                         {6, 8},
                         {7, 9},
                         {8, 10},
                         {5, 11},
                         {6, 12},
                         {11, 13},
                         {12, 14},
                         {13, 15},
                         {14, 16},
                         {11, 12}};
  cv::Mat vis_img = img.clone();
  for (int batchid = 0; batchid < results.size(); batchid++) {
    for (int i = 0; i < results[batchid].num_joints; i++) {
      if (results[batchid].keypoints[i * 3] > threshold) {
        int x_coord = int(results[batchid].keypoints[i * 3 + 1]);
        int y_coord = int(results[batchid].keypoints[i * 3 + 2]);
        cv::circle(vis_img,
                   cv::Point2d(x_coord, y_coord),
                   1,
                   cv::Scalar(0, 0, 255),
                   2);
      }
    }
    for (int i = 0; i < results[batchid].num_joints; i++) {
      if (results[batchid].keypoints[edge[i][0] * 3] > threshold &&
          results[batchid].keypoints[edge[i][1] * 3] > threshold) {
        int x_start = int(results[batchid].keypoints[edge[i][0] * 3 + 1]);
        int y_start = int(results[batchid].keypoints[edge[i][0] * 3 + 2]);
        int x_end = int(results[batchid].keypoints[edge[i][1] * 3 + 1]);
        int y_end = int(results[batchid].keypoints[edge[i][1] * 3 + 2]);
        cv::line(vis_img,
                 cv::Point2d(x_start, y_start),
                 cv::Point2d(x_end, y_end),
                 colormap[i],
                 1);
      }
    }
  }
  return vis_img;
}

void KeyPointDetector::Preprocess(const cv::Mat& ori_im) {
  // Clone the image : keep the original mat for postprocess
  cv::Mat im = ori_im.clone();
  cv::cvtColor(im, im, cv::COLOR_BGR2RGB);
  preprocessor_.Run(&im, &inputs_);
}

void KeyPointDetector::Postprocess(std::vector<float>& output,
                                   std::vector<int64_t>& output_shape,
                                   std::vector<int64_t>& idxout,
                                   std::vector<int64_t>& idx_shape,
                                   std::vector<KeyPointResult>* result,
                                   std::vector<std::vector<float>>& center_bs,
                                   std::vector<std::vector<float>>& scale_bs) {
  std::vector<float> preds(output_shape[1] * 3, 0);

  for (int batchid = 0; batchid < output_shape[0]; batchid++) {
    get_final_preds(output,
                    output_shape,
                    idxout,
                    idx_shape,
                    center_bs[batchid],
                    scale_bs[batchid],
                    preds,
                    batchid,
                    this->use_dark());
    KeyPointResult result_item;
    result_item.num_joints = output_shape[1];
    result_item.keypoints.clear();
    for (int i = 0; i < output_shape[1]; i++) {
      result_item.keypoints.emplace_back(preds[i * 3]);
      result_item.keypoints.emplace_back(preds[i * 3 + 1]);
      result_item.keypoints.emplace_back(preds[i * 3 + 2]);
    }
    result->push_back(result_item);
  }
}

void KeyPointDetector::Predict(const std::vector<cv::Mat> imgs,
                               std::vector<std::vector<float>>& center_bs,
                               std::vector<std::vector<float>>& scale_bs,
                               const int warmup,
                               const int repeats,
                               std::vector<KeyPointResult>* result,
                               std::vector<double>* times) {
  auto preprocess_start = std::chrono::steady_clock::now();
  int batch_size = imgs.size();

  // in_data_batch
  std::vector<float> in_data_all;

  // Preprocess image
  for (int bs_idx = 0; bs_idx < batch_size; bs_idx++) {
    cv::Mat im = imgs.at(bs_idx);
    Preprocess(im);

    // TODO: reduce cost time
    in_data_all.insert(
        in_data_all.end(), inputs_.im_data_.begin(), inputs_.im_data_.end());
  }

  // Prepare input tensor

  auto input_names = predictor_->GetInputNames();
  for (const auto& tensor_name : input_names) {
    auto in_tensor = predictor_->GetInputByName(tensor_name);
    if (tensor_name == "image") {
      int rh = inputs_.in_net_shape_[0];
      int rw = inputs_.in_net_shape_[1];
      in_tensor->Resize({batch_size, 3, rh, rw});
      auto* inptr = in_tensor->mutable_data<float>();
      std::copy_n(in_data_all.data(), in_data_all.size(), inptr);
    }
  }

  auto preprocess_end = std::chrono::steady_clock::now();
  std::vector<int64_t> output_shape, idx_shape;
  // Run predictor
  // warmup
  for (int i = 0; i < warmup; i++) {
    predictor_->Run();
    // Get output tensor
    auto output_names = predictor_->GetOutputNames();
    auto out_tensor = predictor_->GetTensor(output_names[0]);
    auto idx_tensor = predictor_->GetTensor(output_names[1]);
  }

  auto inference_start = std::chrono::steady_clock::now();
  for (int i = 0; i < repeats; i++) {
    predictor_->Run();
    // Get output tensor
    auto output_names = predictor_->GetOutputNames();
    auto out_tensor = predictor_->GetTensor(output_names[0]);
    output_shape = out_tensor->shape();
    // Calculate output length
    int output_size = 1;
    for (int j = 0; j < output_shape.size(); ++j) {
      output_size *= output_shape[j];
    }
    if (output_size < 6) {
      std::cerr << "[WARNING] No object detected." << std::endl;
    }
    output_data_.resize(output_size);
    std::copy_n(
        out_tensor->mutable_data<float>(), output_size, output_data_.data());

    auto idx_tensor = predictor_->GetTensor(output_names[1]);
    idx_shape = idx_tensor->shape();
    // Calculate output length
    output_size = 1;
    for (int j = 0; j < idx_shape.size(); ++j) {
      output_size *= idx_shape[j];
    }
    idx_data_.resize(output_size);
    std::copy_n(
        idx_tensor->mutable_data<int64_t>(), output_size, idx_data_.data());
  }
  auto inference_end = std::chrono::steady_clock::now();
  auto postprocess_start = std::chrono::steady_clock::now();
  // Postprocessing result
  Postprocess(output_data_,
              output_shape,
              idx_data_,
              idx_shape,
              result,
              center_bs,
              scale_bs);
  auto postprocess_end = std::chrono::steady_clock::now();

  std::chrono::duration<float> preprocess_diff =
      preprocess_end - preprocess_start;
  times->push_back(double(preprocess_diff.count() * 1000));
  std::chrono::duration<float> inference_diff = inference_end - inference_start;
  times->push_back(double(inference_diff.count() / repeats * 1000));
  std::chrono::duration<float> postprocess_diff =
      postprocess_end - postprocess_start;
  times->push_back(double(postprocess_diff.count() * 1000));
}

}  // namespace PaddleDetection