object_detector.h 3.09 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <ctime>
#include <memory>
#include <string>
#include <utility>
#include <vector>

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

#include "paddle_api.h"  // NOLINT

#include "include/config_parser.h"
#include "include/preprocess_op.h"
#include "include/utils.h"
#include "include/picodet_postprocess.h"

using namespace paddle::lite_api;  // NOLINT

namespace PaddleDetection {

// Generate visualization colormap for each class
std::vector<int> GenerateColorMap(int num_class);

// Visualiztion Detection Result
cv::Mat VisualizeResult(const cv::Mat& img,
                        const std::vector<PaddleDetection::ObjectResult>& results,
                        const std::vector<std::string>& lables,
                        const std::vector<int>& colormap,
                        const bool is_rbox);

class ObjectDetector {
 public:
  explicit ObjectDetector(const std::string& model_dir,
                          int cpu_threads = 1,
                          const int batch_size = 1) {
    config_.load_config(model_dir);
    printf("config created\n");
    threshold_ = config_.draw_threshold_;
    preprocessor_.Init(config_.preprocess_info_);
    printf("before object detector\n");
    LoadModel(model_dir, cpu_threads);
    printf("create object detector\n");
  }

  // Load Paddle inference model
  void LoadModel(std::string model_file, int num_theads);

  // Run predictor
  void Predict(const std::vector<cv::Mat>& imgs,
               const double threshold = 0.5,
               const int warmup = 0,
               const int repeats = 1,
               std::vector<PaddleDetection::ObjectResult>* result = nullptr,
               std::vector<int>* bbox_num = nullptr,
               std::vector<double>* times = nullptr);

  // Get Model Label list
  const std::vector<std::string>& GetLabelList() const {
    return config_.label_list_;
  }

 private:
  // Preprocess image and copy data to input buffer
  void Preprocess(const cv::Mat& image_mat);
  // Postprocess result
  void Postprocess(const std::vector<cv::Mat> mats,
                   std::vector<PaddleDetection::ObjectResult>* result,
                   std::vector<int> bbox_num,
                   bool is_rbox);

  std::shared_ptr<PaddlePredictor> predictor_;
  Preprocessor preprocessor_;
  ImageBlob inputs_;
  std::vector<float> output_data_;
  std::vector<int> out_bbox_num_data_;
  float threshold_;
  ConfigPaser config_;

};

}  // namespace PaddleDetection