keypoint_detector.h 3.41 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <ctime>
#include <memory>
#include <string>
#include <utility>
#include <vector>

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

#include "paddle_api.h"  // NOLINT

#include "include/config_parser.h"
#include "include/keypoint_postprocess.h"
#include "include/preprocess_op.h"

using namespace paddle::lite_api;  // NOLINT

namespace PaddleDetection {
// Object KeyPoint Result
struct KeyPointResult {
  // Keypoints: shape(N x 3); N: number of Joints; 3: x,y,conf
  std::vector<float> keypoints;
  int num_joints = -1;
};

// Visualiztion KeyPoint Result
cv::Mat VisualizeKptsResult(const cv::Mat& img,
                            const std::vector<KeyPointResult>& results,
                            const std::vector<int>& colormap,
                            float threshold = 0.2);

class KeyPointDetector {
 public:
  explicit KeyPointDetector(const std::string& model_dir,
                            int cpu_threads = 1,
                            const int batch_size = 1,
                            bool use_dark = true) {
    config_.load_config(model_dir);
    threshold_ = config_.draw_threshold_;
    use_dark_ = use_dark;
    preprocessor_.Init(config_.preprocess_info_);
    printf("before keypoint detector\n");
    LoadModel(model_dir, cpu_threads);
    printf("create keypoint detector\n");
  }

  // Load Paddle inference model
  void LoadModel(std::string model_file, int num_theads);

  // Run predictor
  void Predict(const std::vector<cv::Mat> imgs,
               std::vector<std::vector<float>>& center,
               std::vector<std::vector<float>>& scale,
               const int warmup = 0,
               const int repeats = 1,
               std::vector<KeyPointResult>* result = nullptr,
               std::vector<double>* times = nullptr);

  // Get Model Label list
  const std::vector<std::string>& GetLabelList() const {
    return config_.label_list_;
  }

  bool use_dark(){return this->use_dark_;}

  inline float get_threshold() {return threshold_;};

 private:
  // Preprocess image and copy data to input buffer
  void Preprocess(const cv::Mat& image_mat);
  // Postprocess result
  void Postprocess(std::vector<float>& output,
                   std::vector<int64_t>& output_shape,
                   std::vector<int64_t>& idxout,
                   std::vector<int64_t>& idx_shape,
                   std::vector<KeyPointResult>* result,
                   std::vector<std::vector<float>>& center,
                   std::vector<std::vector<float>>& scale);

  std::shared_ptr<PaddlePredictor> predictor_;
  Preprocessor preprocessor_;
  ImageBlob inputs_;
  std::vector<float> output_data_;
  std::vector<int64_t> idx_data_;
  float threshold_;
  ConfigPaser config_;
  bool use_dark_;
};

}  // namespace PaddleDetection