cuda-python.py 6.36 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import sys
import requests
import cv2
import random
import time
import numpy as np
import tensorrt as trt
from cuda import cudart
from pathlib import Path
from collections import OrderedDict, namedtuple


def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleup=True, stride=32):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    if not scaleup:  # only scale down, do not scale up (for better val mAP)
        r = min(r, 1.0)

    # Compute padding
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding

    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im, r, (dw, dh)


w = Path(sys.argv[1])

assert w.exists() and w.suffix in ('.engine', '.plan'), 'Wrong engine path'

names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
         'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
         'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
         'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
         'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
         'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
         'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
         'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
         'hair drier', 'toothbrush']
colors = {name: [random.randint(0, 255) for _ in range(3)] for i, name in enumerate(names)}

url = 'https://oneflow-static.oss-cn-beijing.aliyuncs.com/tripleMu/image1.jpg'
file = requests.get(url)
img = cv2.imdecode(np.frombuffer(file.content, np.uint8), 1)

_, stream = cudart.cudaStreamCreate()

mean = np.array([0.485, 0.456, 0.406], dtype=np.float32).reshape(1, 3, 1, 1)
std = np.array([0.229, 0.224, 0.225], dtype=np.float32).reshape(1, 3, 1, 1)

# Infer TensorRT Engine
Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
logger = trt.Logger(trt.Logger.ERROR)
trt.init_libnvinfer_plugins(logger, namespace="")
with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
    model = runtime.deserialize_cuda_engine(f.read())
bindings = OrderedDict()
fp16 = False  # default updated below
for index in range(model.num_bindings):
    name = model.get_binding_name(index)
    dtype = trt.nptype(model.get_binding_dtype(index))
    shape = tuple(model.get_binding_shape(index))
    data = np.empty(shape, dtype=np.dtype(dtype))
    _, data_ptr = cudart.cudaMallocAsync(data.nbytes, stream)
    bindings[name] = Binding(name, dtype, shape, data, data_ptr)
    if model.binding_is_input(index) and dtype == np.float16:
        fp16 = True
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
context = model.create_execution_context()

image = img.copy()
image, ratio, dwdh = letterbox(image, auto=False)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

image_copy = image.copy()

image = image.transpose((2, 0, 1))
image = np.expand_dims(image, 0)
image = np.ascontiguousarray(image)

im = image.astype(np.float32)
im /= 255
im -= mean
im /= std

_, image_ptr = cudart.cudaMallocAsync(im.nbytes, stream)
cudart.cudaMemcpyAsync(image_ptr, im.ctypes.data, im.nbytes,
                       cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)

# warmup for 10 times
for _ in range(10):
    tmp = np.random.randn(1, 3, 640, 640).astype(np.float32)
    _, tmp_ptr = cudart.cudaMallocAsync(tmp.nbytes, stream)
    binding_addrs['image'] = tmp_ptr
    context.execute_v2(list(binding_addrs.values()))

start = time.perf_counter()
binding_addrs['image'] = image_ptr
context.execute_v2(list(binding_addrs.values()))
print(f'Cost {(time.perf_counter() - start) * 1000}ms')

nums = bindings['num_dets'].data
boxes = bindings['det_boxes'].data
scores = bindings['det_scores'].data
classes = bindings['det_classes'].data

cudart.cudaMemcpyAsync(nums.ctypes.data,
                       bindings['num_dets'].ptr,
                       nums.nbytes,
                       cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
                       stream)
cudart.cudaMemcpyAsync(boxes.ctypes.data,
                       bindings['det_boxes'].ptr,
                       boxes.nbytes,
                       cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
                       stream)
cudart.cudaMemcpyAsync(scores.ctypes.data,
                       bindings['det_scores'].ptr,
                       scores.nbytes,
                       cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
                       stream)
cudart.cudaMemcpyAsync(classes.ctypes.data,
                       bindings['det_classes'].ptr,
                       classes.data.nbytes,
                       cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
                       stream)

cudart.cudaStreamSynchronize(stream)
cudart.cudaStreamDestroy(stream)

for i in binding_addrs.values():
    cudart.cudaFree(i)

num = int(nums[0][0])
box_img = boxes[0, :num].round().astype(np.int32)
score_img = scores[0, :num]
clss_img = classes[0, :num]
for i, (box, score, clss) in enumerate(zip(box_img, score_img, clss_img)):
    name = names[int(clss)]
    color = colors[name]
    cv2.rectangle(image_copy, box[:2].tolist(), box[2:].tolist(), color, 2)
    cv2.putText(image_copy, name, (int(box[0]), int(box[1]) - 2), cv2.FONT_HERSHEY_SIMPLEX,
                0.75, [225, 255, 255], thickness=2)

cv2.imshow('Result', cv2.cvtColor(image_copy, cv2.COLOR_RGB2BGR))
cv2.waitKey(0)