preprocess_op.cc 11.2 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <string>
#include <thread>
#include <vector>

#include "include/preprocess_op.h"

namespace PaddleDetection {

void InitInfo::Run(cv::Mat* im, ImageBlob* data) {
  data->im_shape_ = {static_cast<float>(im->rows),
                     static_cast<float>(im->cols)};
  data->scale_factor_ = {1., 1.};
  data->in_net_shape_ = {static_cast<float>(im->rows),
                         static_cast<float>(im->cols)};
}

void NormalizeImage::Run(cv::Mat* im, ImageBlob* data) {
  double e = 1.0;
  if (is_scale_) {
    e /= 255.0;
  }
  (*im).convertTo(*im, CV_32FC3, e);
  if (norm_type_ == "mean_std"){
    for (int h = 0; h < im->rows; h++) {
      for (int w = 0; w < im->cols; w++) {
        im->at<cv::Vec3f>(h, w)[0] =
            (im->at<cv::Vec3f>(h, w)[0] - mean_[0]) / scale_[0];
        im->at<cv::Vec3f>(h, w)[1] =
            (im->at<cv::Vec3f>(h, w)[1] - mean_[1]) / scale_[1];
        im->at<cv::Vec3f>(h, w)[2] =
            (im->at<cv::Vec3f>(h, w)[2] - mean_[2]) / scale_[2];
      }
    }
  }
}

void Permute::Run(cv::Mat* im, ImageBlob* data) {
  (*im).convertTo(*im, CV_32FC3);
  int rh = im->rows;
  int rw = im->cols;
  int rc = im->channels();
  (data->im_data_).resize(rc * rh * rw);
  float* base = (data->im_data_).data();
  for (int i = 0; i < rc; ++i) {
    cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, base + i * rh * rw), i);
  }
}

void Resize::Run(cv::Mat* im, ImageBlob* data) {
  auto resize_scale = GenerateScale(*im);
  cv::resize(
      *im, *im, cv::Size(), resize_scale.first, resize_scale.second, interp_);

  data->in_net_shape_ = {static_cast<float>(im->rows),
                         static_cast<float>(im->cols)};
  data->im_shape_ = {
      static_cast<float>(im->rows), static_cast<float>(im->cols),
  };
  data->scale_factor_ = {
      resize_scale.second, resize_scale.first,
  };
}

std::pair<float, float> Resize::GenerateScale(const cv::Mat& im) {
  std::pair<float, float> resize_scale;
  int origin_w = im.cols;
  int origin_h = im.rows;

  if (keep_ratio_) {
    int im_size_max = std::max(origin_w, origin_h);
    int im_size_min = std::min(origin_w, origin_h);
    int target_size_max =
        *std::max_element(target_size_.begin(), target_size_.end());
    int target_size_min =
        *std::min_element(target_size_.begin(), target_size_.end());
    float scale_min =
        static_cast<float>(target_size_min) / static_cast<float>(im_size_min);
    float scale_max =
        static_cast<float>(target_size_max) / static_cast<float>(im_size_max);
    float scale_ratio = std::min(scale_min, scale_max);
    resize_scale = {scale_ratio, scale_ratio};
  } else {
    resize_scale.first =
        static_cast<float>(target_size_[1]) / static_cast<float>(origin_w);
    resize_scale.second =
        static_cast<float>(target_size_[0]) / static_cast<float>(origin_h);
  }
  return resize_scale;
}

void LetterBoxResize::Run(cv::Mat* im, ImageBlob* data) {
  float resize_scale = GenerateScale(*im);
  int new_shape_w = std::round(im->cols * resize_scale);
  int new_shape_h = std::round(im->rows * resize_scale);
  data->im_shape_ = {static_cast<float>(new_shape_h),
                     static_cast<float>(new_shape_w)};
  float padw = (target_size_[1] - new_shape_w) / 2.;
  float padh = (target_size_[0] - new_shape_h) / 2.;

  int top = std::round(padh - 0.1);
  int bottom = std::round(padh + 0.1);
  int left = std::round(padw - 0.1);
  int right = std::round(padw + 0.1);

  cv::resize(
      *im, *im, cv::Size(new_shape_w, new_shape_h), 0, 0, cv::INTER_AREA);

  data->in_net_shape_ = {
      static_cast<float>(im->rows), static_cast<float>(im->cols),
  };
  cv::copyMakeBorder(*im,
                     *im,
                     top,
                     bottom,
                     left,
                     right,
                     cv::BORDER_CONSTANT,
                     cv::Scalar(127.5));

  data->in_net_shape_ = {
      static_cast<float>(im->rows), static_cast<float>(im->cols),
  };

  data->scale_factor_ = {
      resize_scale, resize_scale,
  };
}

float LetterBoxResize::GenerateScale(const cv::Mat& im) {
  int origin_w = im.cols;
  int origin_h = im.rows;

  int target_h = target_size_[0];
  int target_w = target_size_[1];

  float ratio_h = static_cast<float>(target_h) / static_cast<float>(origin_h);
  float ratio_w = static_cast<float>(target_w) / static_cast<float>(origin_w);
  float resize_scale = std::min(ratio_h, ratio_w);
  return resize_scale;
}

void PadStride::Run(cv::Mat* im, ImageBlob* data) {
  if (stride_ <= 0) {
    data->in_net_im_ = im->clone();
    return;
  }
  int rc = im->channels();
  int rh = im->rows;
  int rw = im->cols;
  int nh = (rh / stride_) * stride_ + (rh % stride_ != 0) * stride_;
  int nw = (rw / stride_) * stride_ + (rw % stride_ != 0) * stride_;
  cv::copyMakeBorder(
      *im, *im, 0, nh - rh, 0, nw - rw, cv::BORDER_CONSTANT, cv::Scalar(0));
  data->in_net_im_ = im->clone();
  data->in_net_shape_ = {
      static_cast<float>(im->rows), static_cast<float>(im->cols),
  };
}

void TopDownEvalAffine::Run(cv::Mat* im, ImageBlob* data) {
  cv::resize(*im, *im, cv::Size(trainsize_[0], trainsize_[1]), 0, 0, interp_);
  // todo: Simd::ResizeBilinear();
  data->in_net_shape_ = {
      static_cast<float>(trainsize_[1]), static_cast<float>(trainsize_[0]),
  };
}

void GetAffineTrans(const cv::Point2f center,
                    const cv::Point2f input_size,
                    const cv::Point2f output_size,
                    cv::Mat* trans) {
  cv::Point2f srcTri[3];
  cv::Point2f dstTri[3];
  float src_w = input_size.x;
  float dst_w = output_size.x;
  float dst_h = output_size.y;

  cv::Point2f src_dir(0, -0.5 * src_w);
  cv::Point2f dst_dir(0, -0.5 * dst_w);

  srcTri[0] = center;
  srcTri[1] = center + src_dir;
  cv::Point2f src_d = srcTri[0] - srcTri[1];
  srcTri[2] = srcTri[1] + cv::Point2f(-src_d.y, src_d.x);

  dstTri[0] = cv::Point2f(dst_w * 0.5, dst_h * 0.5);
  dstTri[1] = cv::Point2f(dst_w * 0.5, dst_h * 0.5) + dst_dir;
  cv::Point2f dst_d = dstTri[0] - dstTri[1];
  dstTri[2] = dstTri[1] + cv::Point2f(-dst_d.y, dst_d.x);

  *trans = cv::getAffineTransform(srcTri, dstTri);
}

void WarpAffine::Run(cv::Mat* im, ImageBlob* data) {
  cv::cvtColor(*im, *im, cv::COLOR_RGB2BGR);
  cv::Mat trans(2, 3, CV_32FC1);
  cv::Point2f center;
  cv::Point2f input_size;
  int h = im->rows;
  int w = im->cols;
  if (keep_res_) {
    input_h_ = (h | pad_) + 1;
    input_w_ = (w + pad_) + 1;
    input_size = cv::Point2f(input_w_, input_h_);
    center = cv::Point2f(w / 2, h / 2);
  } else {
    float s = std::max(h, w) * 1.0;
    input_size = cv::Point2f(s, s);
    center = cv::Point2f(w / 2., h / 2.);
  }
  cv::Point2f output_size(input_w_, input_h_);

  GetAffineTrans(center, input_size, output_size, &trans);
  cv::warpAffine(*im, *im, trans, cv::Size(input_w_, input_h_));
  data->in_net_shape_ = {
      static_cast<float>(input_h_), static_cast<float>(input_w_),
  };
}

void Pad::Run(cv::Mat* im, ImageBlob* data) {
  int h = size_[0];
  int w = size_[1];
  int rh = im->rows;
  int rw = im->cols;
  if (h == rh && w == rw){
    data->in_net_im_ = im->clone();
    return;
  }
  cv::copyMakeBorder(
      *im, *im, 0, h - rh, 0, w - rw, cv::BORDER_CONSTANT, cv::Scalar(114));
  data->in_net_im_ = im->clone();
  data->in_net_shape_ = {
      static_cast<float>(im->rows), static_cast<float>(im->cols),
  };
}

// Preprocessor op running order
const std::vector<std::string> Preprocessor::RUN_ORDER = {"InitInfo",
                                                          "TopDownEvalAffine",
                                                          "Resize",
                                                          "LetterBoxResize",
                                                          "WarpAffine",
                                                          "NormalizeImage",
                                                          "PadStride",
                                                          "Pad",
                                                          "Permute"};

void Preprocessor::Run(cv::Mat* im, ImageBlob* data) {
  for (const auto& name : RUN_ORDER) {
    if (ops_.find(name) != ops_.end()) {
      ops_[name]->Run(im, data);
    }
  }
}

void CropImg(cv::Mat& img,
             cv::Mat& crop_img,
             std::vector<int>& area,
             std::vector<float>& center,
             std::vector<float>& scale,
             float expandratio) {
  int crop_x1 = std::max(0, area[0]);
  int crop_y1 = std::max(0, area[1]);
  int crop_x2 = std::min(img.cols - 1, area[2]);
  int crop_y2 = std::min(img.rows - 1, area[3]);
  int center_x = (crop_x1 + crop_x2) / 2.;
  int center_y = (crop_y1 + crop_y2) / 2.;
  int half_h = (crop_y2 - crop_y1) / 2.;
  int half_w = (crop_x2 - crop_x1) / 2.;

  // adjust h or w to keep image ratio, expand the shorter edge
  if (half_h * 3 > half_w * 4) {
    half_w = static_cast<int>(half_h * 0.75);
  } else {
    half_h = static_cast<int>(half_w * 4 / 3);
  }

  crop_x1 =
      std::max(0, center_x - static_cast<int>(half_w * (1 + expandratio)));
  crop_y1 =
      std::max(0, center_y - static_cast<int>(half_h * (1 + expandratio)));
  crop_x2 = std::min(img.cols - 1,
                     static_cast<int>(center_x + half_w * (1 + expandratio)));
  crop_y2 = std::min(img.rows - 1,
                     static_cast<int>(center_y + half_h * (1 + expandratio)));
  crop_img =
      img(cv::Range(crop_y1, crop_y2 + 1), cv::Range(crop_x1, crop_x2 + 1));

  center.clear();
  center.emplace_back((crop_x1 + crop_x2) / 2);
  center.emplace_back((crop_y1 + crop_y2) / 2);

  scale.clear();
  scale.emplace_back((crop_x2 - crop_x1));
  scale.emplace_back((crop_y2 - crop_y1));
}

bool CheckDynamicInput(const std::vector<cv::Mat>& imgs) {
  if (imgs.size() == 1) return false;

  int h = imgs.at(0).rows;
  int w = imgs.at(0).cols;
  for (int i = 1; i < imgs.size(); ++i) {
    int hi = imgs.at(i).rows;
    int wi = imgs.at(i).cols;
    if (hi != h || wi != w) {
      return true;
    }
  }
  return false;
}

std::vector<cv::Mat> PadBatch(const std::vector<cv::Mat>& imgs) {
  std::vector<cv::Mat> out_imgs;
  int max_h = 0;
  int max_w = 0;
  int rh = 0;
  int rw = 0;
  // find max_h and max_w in batch
  for (int i = 0; i < imgs.size(); ++i) {
    rh = imgs.at(i).rows;
    rw = imgs.at(i).cols;
    if (rh > max_h) max_h = rh;
    if (rw > max_w) max_w = rw;
  }
  for (int i = 0; i < imgs.size(); ++i) {
    cv::Mat im = imgs.at(i);
    cv::copyMakeBorder(im,
                       im,
                       0,
                       max_h - imgs.at(i).rows,
                       0,
                       max_w - imgs.at(i).cols,
                       cv::BORDER_CONSTANT,
                       cv::Scalar(0));
    out_imgs.push_back(im);
  }
  return out_imgs;
}

}  // namespace PaddleDetection