main_keypoint.cc 21.9 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <glog/logging.h>

#include <math.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <algorithm>
#include <iostream>
#include <numeric>
#include <string>
#include <vector>

#ifdef _WIN32
#include <direct.h>
#include <io.h>
#elif LINUX
#include <stdarg.h>
#endif

#include <gflags/gflags.h>
#include "include/keypoint_detector.h"
#include "include/object_detector.h"
#include "include/preprocess_op.h"

DEFINE_string(model_dir, "", "Path of object detector inference model");
DEFINE_string(model_dir_keypoint,
              "",
              "Path of keypoint detector inference model");
DEFINE_string(image_file, "", "Path of input image");
DEFINE_string(image_dir,
              "",
              "Dir of input image, `image_file` has a higher priority.");
DEFINE_int32(batch_size, 1, "batch_size of object detector");
DEFINE_int32(batch_size_keypoint, 8, "batch_size of keypoint detector");
DEFINE_string(
    video_file,
    "",
    "Path of input video, `video_file` or `camera_id` has a highest priority.");
DEFINE_int32(camera_id, -1, "Device id of camera to predict");
DEFINE_bool(
    use_gpu,
    false,
    "Deprecated, please use `--device` to set the device you want to run.");
DEFINE_string(device,
              "CPU",
              "Choose the device you want to run, it can be: CPU/GPU/XPU, "
              "default is CPU.");
DEFINE_double(threshold, 0.5, "Threshold of score.");
DEFINE_double(threshold_keypoint, 0.5, "Threshold of score.");
DEFINE_string(output_dir, "output", "Directory of output visualization files.");
DEFINE_string(run_mode,
              "paddle",
              "Mode of running(paddle/trt_fp32/trt_fp16/trt_int8)");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute");
DEFINE_bool(run_benchmark,
            false,
            "Whether to predict a image_file repeatedly for benchmark");
DEFINE_bool(use_mkldnn, false, "Whether use mkldnn with CPU");
DEFINE_int32(cpu_threads, 1, "Num of threads with CPU");
DEFINE_int32(trt_min_shape, 1, "Min shape of TRT DynamicShapeI");
DEFINE_int32(trt_max_shape, 1280, "Max shape of TRT DynamicShapeI");
DEFINE_int32(trt_opt_shape, 640, "Opt shape of TRT DynamicShapeI");
DEFINE_bool(trt_calib_mode,
            false,
            "If the model is produced by TRT offline quantitative calibration, "
            "trt_calib_mode need to set True");
DEFINE_bool(use_dark, true, "Whether use dark decode in keypoint postprocess");

void PrintBenchmarkLog(std::vector<double> det_time, int img_num) {
  LOG(INFO) << "----------------------- Config info -----------------------";
  LOG(INFO) << "runtime_device: " << FLAGS_device;
  LOG(INFO) << "ir_optim: "
            << "True";
  LOG(INFO) << "enable_memory_optim: "
            << "True";
  int has_trt = FLAGS_run_mode.find("trt");
  if (has_trt >= 0) {
    LOG(INFO) << "enable_tensorrt: "
              << "True";
    std::string precision = FLAGS_run_mode.substr(4, 8);
    LOG(INFO) << "precision: " << precision;
  } else {
    LOG(INFO) << "enable_tensorrt: "
              << "False";
    LOG(INFO) << "precision: "
              << "fp32";
  }
  LOG(INFO) << "enable_mkldnn: " << (FLAGS_use_mkldnn ? "True" : "False");
  LOG(INFO) << "cpu_math_library_num_threads: " << FLAGS_cpu_threads;
  LOG(INFO) << "----------------------- Data info -----------------------";
  LOG(INFO) << "batch_size: " << FLAGS_batch_size;
  LOG(INFO) << "input_shape: "
            << "dynamic shape";
  LOG(INFO) << "----------------------- Model info -----------------------";
  FLAGS_model_dir.erase(FLAGS_model_dir.find_last_not_of(OS_PATH_SEP) + 1);
  LOG(INFO) << "model_name: " << FLAGS_model_dir;
  LOG(INFO) << "----------------------- Perf info ------------------------";
  LOG(INFO) << "Total number of predicted data: " << img_num
            << " and total time spent(ms): "
            << std::accumulate(det_time.begin(), det_time.end(), 0.);
  img_num = std::max(1, img_num);
  LOG(INFO) << "preproce_time(ms): " << det_time[0] / img_num
            << ", inference_time(ms): " << det_time[1] / img_num
            << ", postprocess_time(ms): " << det_time[2] / img_num;
}

void PrintKptsBenchmarkLog(std::vector<double> det_time, int img_num) {
  LOG(INFO) << "----------------------- Data info -----------------------";
  LOG(INFO) << "batch_size_keypoint: " << FLAGS_batch_size_keypoint;
  LOG(INFO) << "----------------------- Model info -----------------------";
  FLAGS_model_dir_keypoint.erase(
      FLAGS_model_dir_keypoint.find_last_not_of(OS_PATH_SEP) + 1);
  LOG(INFO) << "keypoint_model_name: " << FLAGS_model_dir_keypoint;
  LOG(INFO) << "----------------------- Perf info ------------------------";
  LOG(INFO) << "Total number of predicted data: " << img_num
            << " and total time spent(ms): "
            << std::accumulate(det_time.begin(), det_time.end(), 0.);
  img_num = std::max(1, img_num);
  LOG(INFO) << "Average time cost per person:";
  LOG(INFO) << "preproce_time(ms): " << det_time[0] / img_num
            << ", inference_time(ms): " << det_time[1] / img_num
            << ", postprocess_time(ms): " << det_time[2] / img_num;
}

static std::string DirName(const std::string& filepath) {
  auto pos = filepath.rfind(OS_PATH_SEP);
  if (pos == std::string::npos) {
    return "";
  }
  return filepath.substr(0, pos);
}

static bool PathExists(const std::string& path) {
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
#endif  // !_WIN32
}

static void MkDir(const std::string& path) {
  if (PathExists(path)) return;
  int ret = 0;
#ifdef _WIN32
  ret = _mkdir(path.c_str());
#else
  ret = mkdir(path.c_str(), 0755);
#endif  // !_WIN32
  if (ret != 0) {
    std::string path_error(path);
    path_error += " mkdir failed!";
    throw std::runtime_error(path_error);
  }
}

static void MkDirs(const std::string& path) {
  if (path.empty()) return;
  if (PathExists(path)) return;

  MkDirs(DirName(path));
  MkDir(path);
}

void PredictVideo(const std::string& video_path,
                  PaddleDetection::ObjectDetector* det,
                  PaddleDetection::KeyPointDetector* keypoint,
                  const std::string& output_dir = "output") {
  // Open video
  cv::VideoCapture capture;
  std::string video_out_name = "output.mp4";
  if (FLAGS_camera_id != -1) {
    capture.open(FLAGS_camera_id);
  } else {
    capture.open(video_path.c_str());
    video_out_name =
        video_path.substr(video_path.find_last_of(OS_PATH_SEP) + 1);
  }
  if (!capture.isOpened()) {
    printf("can not open video : %s\n", video_path.c_str());
    return;
  }

  // Get Video info : resolution, fps, frame count
  int video_width = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_WIDTH));
  int video_height = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_HEIGHT));
  int video_fps = static_cast<int>(capture.get(CV_CAP_PROP_FPS));
  int video_frame_count =
      static_cast<int>(capture.get(CV_CAP_PROP_FRAME_COUNT));
  printf("fps: %d, frame_count: %d\n", video_fps, video_frame_count);

  // Create VideoWriter for output
  cv::VideoWriter video_out;
  std::string video_out_path(output_dir);
  if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) {
    video_out_path += OS_PATH_SEP;
  }
  video_out_path += video_out_name;
  video_out.open(video_out_path.c_str(),
                 0x00000021,
                 video_fps,
                 cv::Size(video_width, video_height),
                 true);
  if (!video_out.isOpened()) {
    printf("create video writer failed!\n");
    return;
  }
  PaddleDetection::PoseSmooth smoother =
      PaddleDetection::PoseSmooth(video_width, video_height);

  std::vector<PaddleDetection::ObjectResult> result;
  std::vector<int> bbox_num;
  std::vector<double> det_times;
  auto labels = det->GetLabelList();
  auto colormap = PaddleDetection::GenerateColorMap(labels.size());

  // Store keypoint results
  std::vector<PaddleDetection::KeyPointResult> result_kpts;
  std::vector<cv::Mat> imgs_kpts;
  std::vector<std::vector<float>> center_bs;
  std::vector<std::vector<float>> scale_bs;
  std::vector<int> colormap_kpts = PaddleDetection::GenerateColorMap(20);
  // Capture all frames and do inference
  cv::Mat frame;
  int frame_id = 1;
  bool is_rbox = false;
  while (capture.read(frame)) {
    if (frame.empty()) {
      break;
    }
    std::vector<cv::Mat> imgs;
    imgs.push_back(frame);
    printf("detect frame: %d\n", frame_id);
    det->Predict(imgs, FLAGS_threshold, 0, 1, &result, &bbox_num, &det_times);
    std::vector<PaddleDetection::ObjectResult> out_result;
    for (const auto& item : result) {
      if (item.confidence < FLAGS_threshold || item.class_id == -1) {
        continue;
      }
      out_result.push_back(item);
      if (item.rect.size() > 6) {
        is_rbox = true;
        printf("class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n",
               item.class_id,
               item.confidence,
               item.rect[0],
               item.rect[1],
               item.rect[2],
               item.rect[3],
               item.rect[4],
               item.rect[5],
               item.rect[6],
               item.rect[7]);
      } else {
        printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n",
               item.class_id,
               item.confidence,
               item.rect[0],
               item.rect[1],
               item.rect[2],
               item.rect[3]);
      }
    }

    if (keypoint) {
      result_kpts.clear();
      int imsize = out_result.size();
      for (int i = 0; i < imsize; i++) {
        auto item = out_result[i];
        cv::Mat crop_img;
        std::vector<double> keypoint_times;
        std::vector<int> rect = {
            item.rect[0], item.rect[1], item.rect[2], item.rect[3]};
        std::vector<float> center;
        std::vector<float> scale;
        if (item.class_id == 0) {
          PaddleDetection::CropImg(frame, crop_img, rect, center, scale);
          center_bs.emplace_back(center);
          scale_bs.emplace_back(scale);
          imgs_kpts.emplace_back(crop_img);
        }

        if (imgs_kpts.size() == FLAGS_batch_size_keypoint ||
            ((i == imsize - 1) && !imgs_kpts.empty())) {
          keypoint->Predict(imgs_kpts,
                            center_bs,
                            scale_bs,
                            FLAGS_threshold,
                            0,
                            1,
                            &result_kpts,
                            &keypoint_times);
          imgs_kpts.clear();
          center_bs.clear();
          scale_bs.clear();
        }
      }

      if (result_kpts.size() == 1) {
        for (int i = 0; i < result_kpts.size(); i++) {
          result_kpts[i] = smoother.smooth_process(&(result_kpts[i]));
        }
      }

      cv::Mat out_im = VisualizeKptsResult(frame, result_kpts, colormap_kpts);
      video_out.write(out_im);
    } else {
      // Visualization result
      cv::Mat out_im = PaddleDetection::VisualizeResult(
          frame, out_result, labels, colormap, is_rbox);
      video_out.write(out_im);
    }

    frame_id += 1;
  }
  capture.release();
  video_out.release();
}

void PredictImage(const std::vector<std::string> all_img_paths,
                  const int batch_size,
                  const double threshold,
                  const bool run_benchmark,
                  PaddleDetection::ObjectDetector* det,
                  PaddleDetection::KeyPointDetector* keypoint,
                  const std::string& output_dir = "output") {
  std::vector<double> det_t = {0, 0, 0};
  int steps = ceil(static_cast<float>(all_img_paths.size()) / batch_size);
  int kpts_imgs = 0;
  std::vector<double> keypoint_t = {0, 0, 0};
  printf("total images = %d, batch_size = %d, total steps = %d\n",
         all_img_paths.size(),
         batch_size,
         steps);
  for (int idx = 0; idx < steps; idx++) {
    std::vector<cv::Mat> batch_imgs;
    int left_image_cnt = all_img_paths.size() - idx * batch_size;
    if (left_image_cnt > batch_size) {
      left_image_cnt = batch_size;
    }
    for (int bs = 0; bs < left_image_cnt; bs++) {
      std::string image_file_path = all_img_paths.at(idx * batch_size + bs);
      cv::Mat im = cv::imread(image_file_path, 1);
      batch_imgs.insert(batch_imgs.end(), im);
    }

    // Store all detected result
    std::vector<PaddleDetection::ObjectResult> result;
    std::vector<int> bbox_num;
    std::vector<double> det_times;

    // Store keypoint results
    std::vector<PaddleDetection::KeyPointResult> result_kpts;
    std::vector<cv::Mat> imgs_kpts;
    std::vector<std::vector<float>> center_bs;
    std::vector<std::vector<float>> scale_bs;
    std::vector<int> colormap_kpts = PaddleDetection::GenerateColorMap(20);

    bool is_rbox = false;
    if (run_benchmark) {
      det->Predict(
          batch_imgs, threshold, 10, 10, &result, &bbox_num, &det_times);
    } else {
      det->Predict(batch_imgs, threshold, 0, 1, &result, &bbox_num, &det_times);
    }
    // get labels and colormap
    auto labels = det->GetLabelList();
    auto colormap = PaddleDetection::GenerateColorMap(labels.size());
    int item_start_idx = 0;
    for (int i = 0; i < left_image_cnt; i++) {
      cv::Mat im = batch_imgs[i];
      std::vector<PaddleDetection::ObjectResult> im_result;
      int detect_num = 0;
      for (int j = 0; j < bbox_num[i]; j++) {
        PaddleDetection::ObjectResult item = result[item_start_idx + j];
        if (item.confidence < threshold || item.class_id == -1) {
          continue;
        }
        detect_num += 1;
        im_result.push_back(item);
        if (item.rect.size() > 6) {
          is_rbox = true;
          printf("class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n",
                 item.class_id,
                 item.confidence,
                 item.rect[0],
                 item.rect[1],
                 item.rect[2],
                 item.rect[3],
                 item.rect[4],
                 item.rect[5],
                 item.rect[6],
                 item.rect[7]);
        } else {
          printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n",
                 item.class_id,
                 item.confidence,
                 item.rect[0],
                 item.rect[1],
                 item.rect[2],
                 item.rect[3]);
        }
      }
      std::cout << all_img_paths.at(idx * batch_size + i)
                << " The number of detected box: " << detect_num << std::endl;
      item_start_idx = item_start_idx + bbox_num[i];

      std::vector<int> compression_params;
      compression_params.push_back(CV_IMWRITE_JPEG_QUALITY);
      compression_params.push_back(95);
      std::string output_path(output_dir);
      if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) {
        output_path += OS_PATH_SEP;
      }
      std::string image_file_path = all_img_paths.at(idx * batch_size + i);
      if (keypoint) {
        int imsize = im_result.size();
        for (int i = 0; i < imsize; i++) {
          auto item = im_result[i];
          cv::Mat crop_img;
          std::vector<double> keypoint_times;
          std::vector<int> rect = {
              item.rect[0], item.rect[1], item.rect[2], item.rect[3]};
          std::vector<float> center;
          std::vector<float> scale;
          if (item.class_id == 0) {
            PaddleDetection::CropImg(im, crop_img, rect, center, scale);
            center_bs.emplace_back(center);
            scale_bs.emplace_back(scale);
            imgs_kpts.emplace_back(crop_img);
            kpts_imgs += 1;
          }

          if (imgs_kpts.size() == FLAGS_batch_size_keypoint ||
              ((i == imsize - 1) && !imgs_kpts.empty())) {
            if (run_benchmark) {
              keypoint->Predict(imgs_kpts,
                                center_bs,
                                scale_bs,
                                0.5,
                                10,
                                10,
                                &result_kpts,
                                &keypoint_times);
            } else {
              keypoint->Predict(imgs_kpts,
                                center_bs,
                                scale_bs,
                                0.5,
                                0,
                                1,
                                &result_kpts,
                                &keypoint_times);
            }
            imgs_kpts.clear();
            center_bs.clear();
            scale_bs.clear();
            keypoint_t[0] += keypoint_times[0];
            keypoint_t[1] += keypoint_times[1];
            keypoint_t[2] += keypoint_times[2];
          }
        }
        std::string kpts_savepath =
            output_path + "keypoint_" +
            image_file_path.substr(image_file_path.find_last_of(OS_PATH_SEP) + 1);
        cv::Mat kpts_vis_img =
            VisualizeKptsResult(im, result_kpts, colormap_kpts);
        cv::imwrite(kpts_savepath, kpts_vis_img, compression_params);
        printf("Visualized output saved as %s\n", kpts_savepath.c_str());
      } else {
        // Visualization result
        cv::Mat vis_img = PaddleDetection::VisualizeResult(
            im, im_result, labels, colormap, is_rbox);
        std::string det_savepath =
            output_path +
            image_file_path.substr(image_file_path.find_last_of(OS_PATH_SEP) + 1);
        cv::imwrite(det_savepath, vis_img, compression_params);
        printf("Visualized output saved as %s\n", det_savepath.c_str());
      }
    }

    det_t[0] += det_times[0];
    det_t[1] += det_times[1];
    det_t[2] += det_times[2];
  }
  PrintBenchmarkLog(det_t, all_img_paths.size());
  if (keypoint) {
    PrintKptsBenchmarkLog(keypoint_t, kpts_imgs);
  }
}

int main(int argc, char** argv) {
  // Parsing command-line
  google::ParseCommandLineFlags(&argc, &argv, true);
  if (FLAGS_model_dir.empty() ||
      (FLAGS_image_file.empty() && FLAGS_image_dir.empty() &&
       FLAGS_video_file.empty())) {
    std::cout << "Usage: ./main --model_dir=/PATH/TO/INFERENCE_MODEL/ "
                 "(--model_dir_keypoint=/PATH/TO/INFERENCE_MODEL/)"
              << "--image_file=/PATH/TO/INPUT/IMAGE/" << std::endl;
    return -1;
  }
  if (!(FLAGS_run_mode == "paddle" || FLAGS_run_mode == "trt_fp32" ||
        FLAGS_run_mode == "trt_fp16" || FLAGS_run_mode == "trt_int8")) {
    std::cout
        << "run_mode should be 'paddle', 'trt_fp32', 'trt_fp16' or 'trt_int8'.";
    return -1;
  }
  transform(FLAGS_device.begin(),
            FLAGS_device.end(),
            FLAGS_device.begin(),
            ::toupper);
  if (!(FLAGS_device == "CPU" || FLAGS_device == "GPU" ||
        FLAGS_device == "XPU")) {
    std::cout << "device should be 'CPU', 'GPU' or 'XPU'.";
    return -1;
  }
  if (FLAGS_use_gpu) {
    std::cout << "Deprecated, please use `--device` to set the device you want "
                 "to run.";
    return -1;
  }
  // Load model and create a object detector
  PaddleDetection::ObjectDetector det(FLAGS_model_dir,
                                      FLAGS_device,
                                      FLAGS_use_mkldnn,
                                      FLAGS_cpu_threads,
                                      FLAGS_run_mode,
                                      FLAGS_batch_size,
                                      FLAGS_gpu_id,
                                      FLAGS_trt_min_shape,
                                      FLAGS_trt_max_shape,
                                      FLAGS_trt_opt_shape,
                                      FLAGS_trt_calib_mode);

  PaddleDetection::KeyPointDetector* keypoint = nullptr;
  if (!FLAGS_model_dir_keypoint.empty()) {
    keypoint = new PaddleDetection::KeyPointDetector(FLAGS_model_dir_keypoint,
                                                     FLAGS_device,
                                                     FLAGS_use_mkldnn,
                                                     FLAGS_cpu_threads,
                                                     FLAGS_run_mode,
                                                     FLAGS_batch_size_keypoint,
                                                     FLAGS_gpu_id,
                                                     FLAGS_trt_min_shape,
                                                     FLAGS_trt_max_shape,
                                                     FLAGS_trt_opt_shape,
                                                     FLAGS_trt_calib_mode,
                                                     FLAGS_use_dark);
  }
  // Do inference on input video or image
  if (!PathExists(FLAGS_output_dir)) {
    MkDirs(FLAGS_output_dir);
  }
  if (!FLAGS_video_file.empty() || FLAGS_camera_id != -1) {
    PredictVideo(FLAGS_video_file, &det, keypoint, FLAGS_output_dir);
  } else if (!FLAGS_image_file.empty() || !FLAGS_image_dir.empty()) {
    std::vector<std::string> all_img_paths;
    std::vector<cv::String> cv_all_img_paths;
    if (!FLAGS_image_file.empty()) {
      all_img_paths.push_back(FLAGS_image_file);
      if (FLAGS_batch_size > 1) {
        std::cout << "batch_size should be 1, when set `image_file`."
                  << std::endl;
        return -1;
      }
    } else {
      cv::glob(FLAGS_image_dir, cv_all_img_paths);
      for (const auto& img_path : cv_all_img_paths) {
        all_img_paths.push_back(img_path);
      }
    }
    PredictImage(all_img_paths,
                 FLAGS_batch_size,
                 FLAGS_threshold,
                 FLAGS_run_benchmark,
                 &det,
                 keypoint,
                 FLAGS_output_dir);
  }
  delete keypoint;
  keypoint = nullptr;
  return 0;
}