jde_detector.cc 12.4 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
// for setprecision
#include <chrono>
#include <iomanip>
#include "include/jde_detector.h"

using namespace paddle_infer;

namespace PaddleDetection {

// Load Model and create model predictor
void JDEDetector::LoadModel(const std::string& model_dir,
                            const int batch_size,
                            const std::string& run_mode) {
  paddle_infer::Config config;
  std::string prog_file = model_dir + OS_PATH_SEP + "model.pdmodel";
  std::string params_file = model_dir + OS_PATH_SEP + "model.pdiparams";
  config.SetModel(prog_file, params_file);
  if (this->device_ == "GPU") {
    config.EnableUseGpu(200, this->gpu_id_);
    config.SwitchIrOptim(true);
    // use tensorrt
    if (run_mode != "paddle") {
      auto precision = paddle_infer::Config::Precision::kFloat32;
      if (run_mode == "trt_fp32") {
        precision = paddle_infer::Config::Precision::kFloat32;
      } else if (run_mode == "trt_fp16") {
        precision = paddle_infer::Config::Precision::kHalf;
      } else if (run_mode == "trt_int8") {
        precision = paddle_infer::Config::Precision::kInt8;
      } else {
        printf(
            "run_mode should be 'paddle', 'trt_fp32', 'trt_fp16' or "
            "'trt_int8'");
      }
      // set tensorrt
      config.EnableTensorRtEngine(1 << 30,
                                  batch_size,
                                  this->min_subgraph_size_,
                                  precision,
                                  false,
                                  this->trt_calib_mode_);

      // set use dynamic shape
      if (this->use_dynamic_shape_) {
        // set DynamicShsape for image tensor
        const std::vector<int> min_input_shape = {
            1, 3, this->trt_min_shape_, this->trt_min_shape_};
        const std::vector<int> max_input_shape = {
            1, 3, this->trt_max_shape_, this->trt_max_shape_};
        const std::vector<int> opt_input_shape = {
            1, 3, this->trt_opt_shape_, this->trt_opt_shape_};
        const std::map<std::string, std::vector<int>> map_min_input_shape = {
            {"image", min_input_shape}};
        const std::map<std::string, std::vector<int>> map_max_input_shape = {
            {"image", max_input_shape}};
        const std::map<std::string, std::vector<int>> map_opt_input_shape = {
            {"image", opt_input_shape}};

        config.SetTRTDynamicShapeInfo(
            map_min_input_shape, map_max_input_shape, map_opt_input_shape);
        std::cout << "TensorRT dynamic shape enabled" << std::endl;
      }
    }

  } else if (this->device_ == "XPU") {
    config.EnableXpu(10 * 1024 * 1024);
  } else {
    config.DisableGpu();
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
      // cache 10 different shapes for mkldnn to avoid memory leak
      config.SetMkldnnCacheCapacity(10);
    }
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
  config.SwitchUseFeedFetchOps(false);
  config.SwitchIrOptim(true);
  config.DisableGlogInfo();
  // Memory optimization
  config.EnableMemoryOptim();
  predictor_ = std::move(CreatePredictor(config));
}

// Visualiztion results
cv::Mat VisualizeTrackResult(const cv::Mat& img,
                             const MOT_Result& results,
                             const float fps,
                             const int frame_id) {
  cv::Mat vis_img = img.clone();
  int im_h = img.rows;
  int im_w = img.cols;
  float text_scale = std::max(1, int(im_w / 1600.));
  float text_thickness = 2.;
  float line_thickness = std::max(1, int(im_w / 500.));

  std::ostringstream oss;
  oss << std::setiosflags(std::ios::fixed) << std::setprecision(4);
  oss << "frame: " << frame_id << " ";
  oss << "fps: " << fps << " ";
  oss << "num: " << results.size();
  std::string text = oss.str();

  cv::Point origin;
  origin.x = 0;
  origin.y = int(15 * text_scale);
  cv::putText(vis_img,
              text,
              origin,
              cv::FONT_HERSHEY_PLAIN,
              text_scale,
              (0, 0, 255),
              2);

  for (int i = 0; i < results.size(); ++i) {
    const int obj_id = results[i].ids;
    const float score = results[i].score;

    cv::Scalar color = GetColor(obj_id);

    cv::Point pt1 = cv::Point(results[i].rects.left, results[i].rects.top);
    cv::Point pt2 = cv::Point(results[i].rects.right, results[i].rects.bottom);
    cv::Point id_pt =
        cv::Point(results[i].rects.left, results[i].rects.top + 10);
    cv::Point score_pt =
        cv::Point(results[i].rects.left, results[i].rects.top - 10);
    cv::rectangle(vis_img, pt1, pt2, color, line_thickness);

    std::ostringstream idoss;
    idoss << std::setiosflags(std::ios::fixed) << std::setprecision(4);
    idoss << obj_id;
    std::string id_text = idoss.str();

    cv::putText(vis_img,
                id_text,
                id_pt,
                cv::FONT_HERSHEY_PLAIN,
                text_scale,
                cv::Scalar(0, 255, 255),
                text_thickness);

    std::ostringstream soss;
    soss << std::setiosflags(std::ios::fixed) << std::setprecision(2);
    soss << score;
    std::string score_text = soss.str();

    cv::putText(vis_img,
                score_text,
                score_pt,
                cv::FONT_HERSHEY_PLAIN,
                text_scale,
                cv::Scalar(0, 255, 255),
                text_thickness);
  }
  return vis_img;
}

void FilterDets(const float conf_thresh,
                const cv::Mat dets,
                std::vector<int>* index) {
  for (int i = 0; i < dets.rows; ++i) {
    float score = *dets.ptr<float>(i, 4);
    if (score > conf_thresh) {
      index->push_back(i);
    }
  }
}

void JDEDetector::Preprocess(const cv::Mat& ori_im) {
  // Clone the image : keep the original mat for postprocess
  cv::Mat im = ori_im.clone();
  preprocessor_.Run(&im, &inputs_);
}

void JDEDetector::Postprocess(const cv::Mat dets,
                              const cv::Mat emb,
                              MOT_Result* result) {
  result->clear();
  std::vector<Track> tracks;
  std::vector<int> valid;
  FilterDets(conf_thresh_, dets, &valid);
  cv::Mat new_dets, new_emb;
  for (int i = 0; i < valid.size(); ++i) {
    new_dets.push_back(dets.row(valid[i]));
    new_emb.push_back(emb.row(valid[i]));
  }
  JDETracker::instance()->update(new_dets, new_emb, tracks);
  if (tracks.size() == 0) {
    MOT_Track mot_track;
    MOT_Rect ret = {*dets.ptr<float>(0, 0),
                    *dets.ptr<float>(0, 1),
                    *dets.ptr<float>(0, 2),
                    *dets.ptr<float>(0, 3)};
    mot_track.ids = 1;
    mot_track.score = *dets.ptr<float>(0, 4);
    mot_track.rects = ret;
    result->push_back(mot_track);
  } else {
    std::vector<Track>::iterator titer;
    for (titer = tracks.begin(); titer != tracks.end(); ++titer) {
      if (titer->score < threshold_) {
        continue;
      } else {
        float w = titer->ltrb[2] - titer->ltrb[0];
        float h = titer->ltrb[3] - titer->ltrb[1];
        bool vertical = w / h > 1.6;
        float area = w * h;
        if (area > min_box_area_ && !vertical) {
          MOT_Track mot_track;
          MOT_Rect ret = {
              titer->ltrb[0], titer->ltrb[1], titer->ltrb[2], titer->ltrb[3]};
          mot_track.rects = ret;
          mot_track.score = titer->score;
          mot_track.ids = titer->id;
          result->push_back(mot_track);
        }
      }
    }
  }
}

void JDEDetector::Predict(const std::vector<cv::Mat> imgs,
                          const double threshold,
                          const int warmup,
                          const int repeats,
                          MOT_Result* result,
                          std::vector<double>* times) {
  auto preprocess_start = std::chrono::steady_clock::now();
  int batch_size = imgs.size();

  // in_data_batch
  std::vector<float> in_data_all;
  std::vector<float> im_shape_all(batch_size * 2);
  std::vector<float> scale_factor_all(batch_size * 2);

  // Preprocess image
  for (int bs_idx = 0; bs_idx < batch_size; bs_idx++) {
    cv::Mat im = imgs.at(bs_idx);
    Preprocess(im);
    im_shape_all[bs_idx * 2] = inputs_.im_shape_[0];
    im_shape_all[bs_idx * 2 + 1] = inputs_.im_shape_[1];

    scale_factor_all[bs_idx * 2] = inputs_.scale_factor_[0];
    scale_factor_all[bs_idx * 2 + 1] = inputs_.scale_factor_[1];

    // TODO: reduce cost time
    in_data_all.insert(
        in_data_all.end(), inputs_.im_data_.begin(), inputs_.im_data_.end());
  }

  // Prepare input tensor
  auto input_names = predictor_->GetInputNames();
  for (const auto& tensor_name : input_names) {
    auto in_tensor = predictor_->GetInputHandle(tensor_name);
    if (tensor_name == "image") {
      int rh = inputs_.in_net_shape_[0];
      int rw = inputs_.in_net_shape_[1];
      in_tensor->Reshape({batch_size, 3, rh, rw});
      in_tensor->CopyFromCpu(in_data_all.data());
    } else if (tensor_name == "im_shape") {
      in_tensor->Reshape({batch_size, 2});
      in_tensor->CopyFromCpu(im_shape_all.data());
    } else if (tensor_name == "scale_factor") {
      in_tensor->Reshape({batch_size, 2});
      in_tensor->CopyFromCpu(scale_factor_all.data());
    }
  }

  auto preprocess_end = std::chrono::steady_clock::now();
  std::vector<int> bbox_shape;
  std::vector<int> emb_shape;
  // Run predictor
  // warmup
  for (int i = 0; i < warmup; i++) {
    predictor_->Run();
    // Get output tensor
    auto output_names = predictor_->GetOutputNames();
    auto bbox_tensor = predictor_->GetOutputHandle(output_names[0]);
    bbox_shape = bbox_tensor->shape();
    auto emb_tensor = predictor_->GetOutputHandle(output_names[1]);
    emb_shape = emb_tensor->shape();
    // Calculate bbox length
    int bbox_size = 1;
    for (int j = 0; j < bbox_shape.size(); ++j) {
      bbox_size *= bbox_shape[j];
    }
    // Calculate emb length
    int emb_size = 1;
    for (int j = 0; j < emb_shape.size(); ++j) {
      emb_size *= emb_shape[j];
    }

    bbox_data_.resize(bbox_size);
    bbox_tensor->CopyToCpu(bbox_data_.data());

    emb_data_.resize(emb_size);
    emb_tensor->CopyToCpu(emb_data_.data());
  }

  auto inference_start = std::chrono::steady_clock::now();
  for (int i = 0; i < repeats; i++) {
    predictor_->Run();
    // Get output tensor
    auto output_names = predictor_->GetOutputNames();
    auto bbox_tensor = predictor_->GetOutputHandle(output_names[0]);
    bbox_shape = bbox_tensor->shape();
    auto emb_tensor = predictor_->GetOutputHandle(output_names[1]);
    emb_shape = emb_tensor->shape();
    // Calculate bbox length
    int bbox_size = 1;
    for (int j = 0; j < bbox_shape.size(); ++j) {
      bbox_size *= bbox_shape[j];
    }
    // Calculate emb length
    int emb_size = 1;
    for (int j = 0; j < emb_shape.size(); ++j) {
      emb_size *= emb_shape[j];
    }

    bbox_data_.resize(bbox_size);
    bbox_tensor->CopyToCpu(bbox_data_.data());

    emb_data_.resize(emb_size);
    emb_tensor->CopyToCpu(emb_data_.data());
  }
  auto inference_end = std::chrono::steady_clock::now();
  auto postprocess_start = std::chrono::steady_clock::now();
  // Postprocessing result
  result->clear();

  cv::Mat dets(bbox_shape[0], 6, CV_32FC1, bbox_data_.data());
  cv::Mat emb(bbox_shape[0], emb_shape[1], CV_32FC1, emb_data_.data());

  Postprocess(dets, emb, result);

  auto postprocess_end = std::chrono::steady_clock::now();

  std::chrono::duration<float> preprocess_diff =
      preprocess_end - preprocess_start;
  (*times)[0] += double(preprocess_diff.count() * 1000);
  std::chrono::duration<float> inference_diff = inference_end - inference_start;
  (*times)[1] += double(inference_diff.count() * 1000);
  std::chrono::duration<float> postprocess_diff =
      postprocess_end - postprocess_start;
  (*times)[2] += double(postprocess_diff.count() * 1000);
}

cv::Scalar GetColor(int idx) {
  idx = idx * 3;
  cv::Scalar color =
      cv::Scalar((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255);
  return color;
}

}  // namespace PaddleDetection