preprocess_op.h 6.4 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <glog/logging.h>
#include <yaml-cpp/yaml.h>

#include <iostream>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

namespace PaddleDetection {

// Object for storing all preprocessed data
class ImageBlob {
 public:
  // image width and height
  std::vector<float> im_shape_;
  // Buffer for image data after preprocessing
  std::vector<float> im_data_;
  // in net data shape(after pad)
  std::vector<float> in_net_shape_;
  // Evaluation image width and height
  // std::vector<float>  eval_im_size_f_;
  // Scale factor for image size to origin image size
  std::vector<float> scale_factor_;
  // in net image after preprocessing
  cv::Mat in_net_im_;
};

// Abstraction of preprocessing opration class
class PreprocessOp {
 public:
  virtual void Init(const YAML::Node& item) = 0;
  virtual void Run(cv::Mat* im, ImageBlob* data) = 0;
};

class InitInfo : public PreprocessOp {
 public:
  virtual void Init(const YAML::Node& item) {}
  virtual void Run(cv::Mat* im, ImageBlob* data);
};

class NormalizeImage : public PreprocessOp {
 public:
  virtual void Init(const YAML::Node& item) {
    mean_ = item["mean"].as<std::vector<float>>();
    scale_ = item["std"].as<std::vector<float>>();
    if (item["is_scale"]) is_scale_ = item["is_scale"].as<bool>();
    if (item["norm_type"]) norm_type_ = item["norm_type"].as<std::string>();
  }

  virtual void Run(cv::Mat* im, ImageBlob* data);

 private:
  // CHW or HWC
  std::vector<float> mean_;
  std::vector<float> scale_;
  bool is_scale_ = true;
  std::string norm_type_ = "mean_std";
};

class Permute : public PreprocessOp {
 public:
  virtual void Init(const YAML::Node& item) {}
  virtual void Run(cv::Mat* im, ImageBlob* data);
};

class Resize : public PreprocessOp {
 public:
  virtual void Init(const YAML::Node& item) {
    interp_ = item["interp"].as<int>();
    keep_ratio_ = item["keep_ratio"].as<bool>();
    target_size_ = item["target_size"].as<std::vector<int>>();
  }

  // Compute best resize scale for x-dimension, y-dimension
  std::pair<float, float> GenerateScale(const cv::Mat& im);

  virtual void Run(cv::Mat* im, ImageBlob* data);

 private:
  int interp_;
  bool keep_ratio_;
  std::vector<int> target_size_;
  std::vector<int> in_net_shape_;
};

class LetterBoxResize : public PreprocessOp {
 public:
  virtual void Init(const YAML::Node& item) {
    target_size_ = item["target_size"].as<std::vector<int>>();
  }

  float GenerateScale(const cv::Mat& im);

  virtual void Run(cv::Mat* im, ImageBlob* data);

 private:
  std::vector<int> target_size_;
  std::vector<int> in_net_shape_;
};
// Models with FPN need input shape % stride == 0
class PadStride : public PreprocessOp {
 public:
  virtual void Init(const YAML::Node& item) {
    stride_ = item["stride"].as<int>();
  }

  virtual void Run(cv::Mat* im, ImageBlob* data);

 private:
  int stride_;
};

class TopDownEvalAffine : public PreprocessOp {
 public:
  virtual void Init(const YAML::Node& item) {
    trainsize_ = item["trainsize"].as<std::vector<int>>();
  }

  virtual void Run(cv::Mat* im, ImageBlob* data);

 private:
  int interp_ = 1;
  std::vector<int> trainsize_;
};

class WarpAffine : public PreprocessOp {
 public:
  virtual void Init(const YAML::Node& item) {
    input_h_ = item["input_h"].as<int>();
    input_w_ = item["input_w"].as<int>();
    keep_res_ = item["keep_res"].as<bool>();
  }

  virtual void Run(cv::Mat* im, ImageBlob* data);

 private:
  int input_h_;
  int input_w_;
  int interp_ = 1;
  bool keep_res_ = true;
  int pad_ = 31;
};

class Pad : public PreprocessOp {
 public:
  virtual void Init(const YAML::Node& item) {
    size_ = item["size"].as<std::vector<int>>();
    fill_value_ = item["fill_value"].as<std::vector<float>>();
  }

  virtual void Run(cv::Mat* im, ImageBlob* data);

 private:
  std::vector<int> size_;
  std::vector<float> fill_value_;
};

void CropImg(cv::Mat& img,
             cv::Mat& crop_img,
             std::vector<int>& area,
             std::vector<float>& center,
             std::vector<float>& scale,
             float expandratio = 0.15);

// check whether the input size is dynamic
bool CheckDynamicInput(const std::vector<cv::Mat>& imgs);

// Pad images in batch
std::vector<cv::Mat> PadBatch(const std::vector<cv::Mat>& imgs);

class Preprocessor {
 public:
  void Init(const YAML::Node& config_node) {
    // initialize image info at first
    ops_["InitInfo"] = std::make_shared<InitInfo>();
    for (const auto& item : config_node) {
      auto op_name = item["type"].as<std::string>();

      ops_[op_name] = CreateOp(op_name);
      ops_[op_name]->Init(item);
    }
  }

  std::shared_ptr<PreprocessOp> CreateOp(const std::string& name) {
    if (name == "Resize") {
      return std::make_shared<Resize>();
    } else if (name == "LetterBoxResize") {
      return std::make_shared<LetterBoxResize>();
    } else if (name == "Permute") {
      return std::make_shared<Permute>();
    } else if (name == "NormalizeImage") {
      return std::make_shared<NormalizeImage>();
    } else if (name == "PadStride") {
      // use PadStride instead of PadBatch
      return std::make_shared<PadStride>();
    } else if (name == "TopDownEvalAffine") {
      return std::make_shared<TopDownEvalAffine>();
    } else if (name == "WarpAffine") {
      return std::make_shared<WarpAffine>();
    }else if (name == "Pad") {
      return std::make_shared<Pad>();
    }
    std::cerr << "can not find function of OP: " << name
              << " and return: nullptr" << std::endl;
    return nullptr;
  }

  void Run(cv::Mat* im, ImageBlob* data);

 public:
  static const std::vector<std::string> RUN_ORDER;

 private:
  std::unordered_map<std::string, std::shared_ptr<PreprocessOp>> ops_;
};

}  // namespace PaddleDetection