keypoint_postprocess.h 4.58 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <math.h>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <vector>

namespace PaddleDetection {

std::vector<float> get_3rd_point(std::vector<float>& a, std::vector<float>& b);

std::vector<float> get_dir(float src_point_x, float src_point_y, float rot_rad);

void affine_tranform(
    float pt_x, float pt_y, cv::Mat& trans, std::vector<float>& preds, int p);

cv::Mat get_affine_transform(std::vector<float>& center,
                             std::vector<float>& scale,
                             float rot,
                             std::vector<int>& output_size,
                             int inv);

void transform_preds(std::vector<float>& coords,
                     std::vector<float>& center,
                     std::vector<float>& scale,
                     std::vector<int>& output_size,
                     std::vector<int>& dim,
                     std::vector<float>& target_coords,
                     bool affine = false);

void box_to_center_scale(std::vector<int>& box,
                         int width,
                         int height,
                         std::vector<float>& center,
                         std::vector<float>& scale);

void get_max_preds(float* heatmap,
                   std::vector<int>& dim,
                   std::vector<float>& preds,
                   float* maxvals,
                   int batchid,
                   int joint_idx);

void get_final_preds(std::vector<float>& heatmap,
                     std::vector<int>& dim,
                     std::vector<int64_t>& idxout,
                     std::vector<int>& idxdim,
                     std::vector<float>& center,
                     std::vector<float> scale,
                     std::vector<float>& preds,
                     int batchid,
                     bool DARK = true);

// Object KeyPoint Result
struct KeyPointResult {
  // Keypoints: shape(N x 3); N: number of Joints; 3: x,y,conf
  std::vector<float> keypoints;
  int num_joints = -1;
};

class PoseSmooth {
 public:
  explicit PoseSmooth(const int width,
                      const int height,
                      std::string filter_type = "OneEuro",
                      float alpha = 0.5,
                      float fc_d = 0.1,
                      float fc_min = 0.1,
                      float beta = 0.1,
                      float thres_mult = 0.3)
      : width(width),
        height(height),
        alpha(alpha),
        fc_d(fc_d),
        fc_min(fc_min),
        beta(beta),
        filter_type(filter_type),
        thres_mult(thres_mult){};

  // Run predictor
  KeyPointResult smooth_process(KeyPointResult* result);
  void PointSmooth(KeyPointResult* result,
                   KeyPointResult* keypoint_smoothed,
                   std::vector<float> thresholds,
                   int index);
  float OneEuroFilter(float x_cur, float x_pre, int loc);
  float smoothing_factor(float te, float fc);
  float ExpSmoothing(float x_cur, float x_pre, int loc = 0);

 private:
  int width = 0;
  int height = 0;
  float alpha = 0.;
  float fc_d = 1.;
  float fc_min = 0.;
  float beta = 1.;
  float thres_mult = 1.;
  std::string filter_type = "OneEuro";
  std::vector<float> thresholds = {0.005,
                                   0.005,
                                   0.005,
                                   0.005,
                                   0.005,
                                   0.01,
                                   0.01,
                                   0.01,
                                   0.01,
                                   0.01,
                                   0.01,
                                   0.01,
                                   0.01,
                                   0.01,
                                   0.01,
                                   0.01,
                                   0.01};
  KeyPointResult x_prev_hat;
  KeyPointResult dx_prev_hat;
};
}  // namespace PaddleDetection