jde_detector.h 4.08 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <ctime>
#include <memory>
#include <string>
#include <utility>
#include <vector>

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

#include "paddle_inference_api.h"  // NOLINT

#include "include/config_parser.h"
#include "include/preprocess_op.h"
#include "include/tracker.h"

using namespace paddle_infer;

namespace PaddleDetection {
// JDE Detection Result
struct MOT_Rect {
  float left;
  float top;
  float right;
  float bottom;
};

struct MOT_Track {
  int ids;
  float score;
  MOT_Rect rects;
};

typedef std::vector<MOT_Track> MOT_Result;

// Generate visualization color
cv::Scalar GetColor(int idx);

// Visualiztion Detection Result
cv::Mat VisualizeTrackResult(const cv::Mat& img,
                             const MOT_Result& results,
                             const float fps,
                             const int frame_id);

class JDEDetector {
 public:
  explicit JDEDetector(const std::string& model_dir,
                       const std::string& device = "CPU",
                       bool use_mkldnn = false,
                       int cpu_threads = 1,
                       const std::string& run_mode = "paddle",
                       const int batch_size = 1,
                       const int gpu_id = 0,
                       const int trt_min_shape = 1,
                       const int trt_max_shape = 1280,
                       const int trt_opt_shape = 640,
                       bool trt_calib_mode = false,
                       const int min_box_area = 200) {
    this->device_ = device;
    this->gpu_id_ = gpu_id;
    this->cpu_math_library_num_threads_ = cpu_threads;
    this->use_mkldnn_ = use_mkldnn;

    this->trt_min_shape_ = trt_min_shape;
    this->trt_max_shape_ = trt_max_shape;
    this->trt_opt_shape_ = trt_opt_shape;
    this->trt_calib_mode_ = trt_calib_mode;
    config_.load_config(model_dir);
    this->use_dynamic_shape_ = config_.use_dynamic_shape_;
    this->min_subgraph_size_ = config_.min_subgraph_size_;
    threshold_ = config_.draw_threshold_;
    preprocessor_.Init(config_.preprocess_info_);
    LoadModel(model_dir, batch_size, run_mode);
    this->min_box_area_ = min_box_area;
    this->conf_thresh_ = config_.conf_thresh_;
  }

  // Load Paddle inference model
  void LoadModel(const std::string& model_dir,
                 const int batch_size = 1,
                 const std::string& run_mode = "paddle");

  // Run predictor
  void Predict(const std::vector<cv::Mat> imgs,
               const double threshold = 0.5,
               const int warmup = 0,
               const int repeats = 1,
               MOT_Result* result = nullptr,
               std::vector<double>* times = nullptr);

 private:
  std::string device_ = "CPU";
  int gpu_id_ = 0;
  int cpu_math_library_num_threads_ = 1;
  bool use_mkldnn_ = false;
  int min_subgraph_size_ = 3;
  bool use_dynamic_shape_ = false;
  int trt_min_shape_ = 1;
  int trt_max_shape_ = 1280;
  int trt_opt_shape_ = 640;
  bool trt_calib_mode_ = false;
  // Preprocess image and copy data to input buffer
  void Preprocess(const cv::Mat& image_mat);
  // Postprocess result
  void Postprocess(const cv::Mat dets, const cv::Mat emb, MOT_Result* result);

  std::shared_ptr<Predictor> predictor_;
  Preprocessor preprocessor_;
  ImageBlob inputs_;
  std::vector<float> bbox_data_;
  std::vector<float> emb_data_;
  float threshold_;
  ConfigPaser config_;
  float min_box_area_;
  float conf_thresh_;
};

}  // namespace PaddleDetection