run.py 7.12 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import numpy as np
import argparse
import paddle
from ppdet.core.workspace import load_config, merge_config
from ppdet.core.workspace import create
from ppdet.metrics import COCOMetric, VOCMetric, KeyPointTopDownCOCOEval
from paddleslim.auto_compression.config_helpers import load_config as load_slim_config
from paddleslim.auto_compression import AutoCompression
from post_process import PPYOLOEPostProcess
from paddleslim.common.dataloader import get_feed_vars


def argsparser():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        '--config_path',
        type=str,
        default=None,
        help="path of compression strategy config.",
        required=True)
    parser.add_argument(
        '--save_dir',
        type=str,
        default='output',
        help="directory to save compressed model.")
    parser.add_argument(
        '--devices',
        type=str,
        default='gpu',
        help="which device used to compress.")

    return parser


def reader_wrapper(reader, input_list):
    def gen():
        for data in reader:
            in_dict = {}
            if isinstance(input_list, list):
                for input_name in input_list:
                    in_dict[input_name] = data[input_name]
            elif isinstance(input_list, dict):
                for input_name in input_list.keys():
                    in_dict[input_list[input_name]] = data[input_name]
            yield in_dict

    return gen


def convert_numpy_data(data, metric):
    data_all = {}
    data_all = {k: np.array(v) for k, v in data.items()}
    if isinstance(metric, VOCMetric):
        for k, v in data_all.items():
            if not isinstance(v[0], np.ndarray):
                tmp_list = []
                for t in v:
                    tmp_list.append(np.array(t))
                data_all[k] = np.array(tmp_list)
    else:
        data_all = {k: np.array(v) for k, v in data.items()}
    return data_all


def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list):
    metric = global_config['metric']
    for batch_id, data in enumerate(val_loader):
        data_all = convert_numpy_data(data, metric)
        data_input = {}
        for k, v in data.items():
            if isinstance(global_config['input_list'], list):
                if k in test_feed_names:
                    data_input[k] = np.array(v)
            elif isinstance(global_config['input_list'], dict):
                if k in global_config['input_list'].keys():
                    data_input[global_config['input_list'][k]] = np.array(v)
        outs = exe.run(compiled_test_program,
                       feed=data_input,
                       fetch_list=test_fetch_list,
                       return_numpy=False)
        res = {}
        if 'include_nms' in global_config and not global_config['include_nms']:
            if 'arch' in global_config and global_config['arch'] == 'PPYOLOE':
                postprocess = PPYOLOEPostProcess(
                    score_threshold=0.01, nms_threshold=0.6)
            else:
                assert "Not support arch={} now.".format(global_config['arch'])
            res = postprocess(np.array(outs[0]), data_all['scale_factor'])
        else:
            for out in outs:
                v = np.array(out)
                if len(v.shape) > 1:
                    res['bbox'] = v
                else:
                    res['bbox_num'] = v

        metric.update(data_all, res)
        if batch_id % 100 == 0:
            print('Eval iter:', batch_id)
    metric.accumulate()
    metric.log()
    map_res = metric.get_results()
    metric.reset()
    map_key = 'keypoint' if 'arch' in global_config and global_config[
        'arch'] == 'keypoint' else 'bbox'
    return map_res[map_key][0]


def main():
    global global_config
    all_config = load_slim_config(FLAGS.config_path)
    assert "Global" in all_config, "Key 'Global' not found in config file."
    global_config = all_config["Global"]
    reader_cfg = load_config(global_config['reader_config'])

    train_loader = create('EvalReader')(reader_cfg['TrainDataset'],
                                        reader_cfg['worker_num'],
                                        return_list=True)
    if global_config.get('input_list') is None:
        global_config['input_list'] = get_feed_vars(
            global_config['model_dir'], global_config['model_filename'],
            global_config['params_filename'])
    train_loader = reader_wrapper(train_loader, global_config['input_list'])

    if 'Evaluation' in global_config.keys() and global_config[
            'Evaluation'] and paddle.distributed.get_rank() == 0:
        eval_func = eval_function
        dataset = reader_cfg['EvalDataset']
        global val_loader
        _eval_batch_sampler = paddle.io.BatchSampler(
            dataset, batch_size=reader_cfg['EvalReader']['batch_size'])
        val_loader = create('EvalReader')(dataset,
                                          reader_cfg['worker_num'],
                                          batch_sampler=_eval_batch_sampler,
                                          return_list=True)
        metric = None
        if reader_cfg['metric'] == 'COCO':
            clsid2catid = {v: k for k, v in dataset.catid2clsid.items()}
            anno_file = dataset.get_anno()
            metric = COCOMetric(
                anno_file=anno_file, clsid2catid=clsid2catid, IouType='bbox')
        elif reader_cfg['metric'] == 'VOC':
            metric = VOCMetric(
                label_list=dataset.get_label_list(),
                class_num=reader_cfg['num_classes'],
                map_type=reader_cfg['map_type'])
        elif reader_cfg['metric'] == 'KeyPointTopDownCOCOEval':
            anno_file = dataset.get_anno()
            metric = KeyPointTopDownCOCOEval(anno_file,
                                             len(dataset), 17, 'output_eval')
        else:
            raise ValueError("metric currently only supports COCO and VOC.")
        global_config['metric'] = metric
    else:
        eval_func = None

    ac = AutoCompression(
        model_dir=global_config["model_dir"],
        model_filename=global_config["model_filename"],
        params_filename=global_config["params_filename"],
        save_dir=FLAGS.save_dir,
        config=all_config,
        train_dataloader=train_loader,
        eval_callback=eval_func)
    ac.compress()


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    assert FLAGS.devices in ['cpu', 'gpu', 'xpu', 'npu']
    paddle.set_device(FLAGS.devices)

    main()