Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
yolov5_migraphx
Commits
81897140
Commit
81897140
authored
Oct 24, 2023
by
liucong
Browse files
修改readme
parent
267b4b4d
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
21 additions
and
7 deletions
+21
-7
Doc/YOLOV5_02.png
Doc/YOLOV5_02.png
+0
-0
README.md
README.md
+18
-6
docker/Dockerfile
docker/Dockerfile
+2
-0
model.properties
model.properties
+1
-1
No files found.
Doc/YOLOV5_02.png
0 → 100644
View file @
81897140
29.4 KB
README.md
View file @
81897140
...
...
@@ -12,15 +12,14 @@ YoloV5是一种单阶段目标检测算法,该算法在YOLOV4的基础上添
## 算法原理
Y
oloV5模型的主要改进思路有以下几点:
Y
OLOv5算法通过将图像划分为不同大小的网格,预测每个网格中的目标类别和边界框,利用特征金字塔结构和自适应的模型缩放来实现高效准确的实时目标检测。
-
输入端的Mosaic数据增强、自适应锚框计算、自适应图像缩放操作;
-
主干网络的Focus结构与CSP结构;
-
Neck端的FPN+PAN结构;
-
输出端的损失函数GIOU_Loss以及预测框筛选的DIOU_nms。
<img
src=
./Doc/YOLOV5_02.png
style=
"zoom:100%;"
align=
middle
>
## 环境配置
### Docker(方法一)
拉取镜像:
```
plaintext
...
...
@@ -36,6 +35,15 @@ docker run --shm-size 16g --network=host --name=yolov5_migraphx --privileged --d
source /opt/dtk/env.sh
```
### Dockerfile(方法二)
```
cd ./docker
docker build --no-cache -t yolov5_migraphx:2.0 .
docker run --shm-size 16g --network=host --name=yolov5_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/yolov5_migraphx:/home/yolov5_migraphx -it <Your Image ID> /bin/bash
```
## 数据集
根据提供的样本数据,进行目标检测。
...
...
@@ -169,6 +177,10 @@ C++程序运行结束后,会在build目录生成YoloV5动态shape推理检测
<img
src=
"./Resource/Images/Result1.jpg"
alt=
"Result"
style=
"zoom:50%;"
/>
### 精度
无
## 应用场景
### 算法类别
...
...
@@ -183,6 +195,6 @@ C++程序运行结束后,会在build目录生成YoloV5动态shape推理检测
https://developer.hpccube.com/codes/modelzoo/yolov5_migraphx
## 参考
## 参考
资料
https://github.com/ultralytics/yolov5
docker/Dockerfile
0 → 100644
View file @
81897140
FROM
image.sourcefind.cn:5000/dcu/admin/base/migraphx:4.0.0-centos7.6-dtk23.04.1-py38-latest
RUN
source
/opt/dtk/env.sh
model.properties
View file @
81897140
...
...
@@ -5,6 +5,6 @@ modelName=yolov5_migraphx
#模型描述
modelDescription
=
YoloV5是一种单阶段目标检测算法,该算法在YOLOV4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。
#应用场景
appScenario
=
推理,
CV,
目标检测
appScenario
=
推理,目标检测
,交通,教育,化工
#框架类型
frameType
=
migraphx
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment