Commit 4ec98d75 authored by liucong's avatar liucong
Browse files

修改yolov5工程格式

parent 84e926a8
......@@ -54,18 +54,11 @@ class YOLOv5:
self.model = migraphx.parse_onnx(path, map_input_dims=maxInput)
# 获取模型输入/输出节点信息
print("inputs:")
inputs = self.model.get_inputs()
for key,value in inputs.items():
print("{}:{}".format(key,value))
print("outputs:")
outputs = self.model.get_outputs()
for key,value in outputs.items():
print("{}:{}".format(key,value))
# 获取模型的输入name
self.inputName = "images"
self.inputName = self.model.get_parameter_names()[0]
# 获取模型的输入尺寸
inputShape = inputShape=inputs[self.inputName].lens()
......
......@@ -22,18 +22,11 @@ class YOLOv5:
self.model = migraphx.parse_onnx(path, map_input_dims=maxInput)
# 获取模型输入/输出节点信息
print("inputs:")
inputs = self.model.get_inputs()
for key,value in inputs.items():
print("{}:{}".format(key,value))
print("outputs:")
outputs = self.model.get_outputs()
for key,value in outputs.items():
print("{}:{}".format(key,value))
# 获取模型的输入name
self.inputName = "images"
self.inputName = self.model.get_parameter_names()[0]
# 获取模型的输入尺寸
inputShape = inputShape=inputs[self.inputName].lens()
......@@ -43,18 +36,11 @@ class YOLOv5:
else:
self.model = migraphx.parse_onnx(path)
# 获取模型输入/输出节点信息
print("inputs:")
inputs = self.model.get_inputs()
for key,value in inputs.items():
print("{}:{}".format(key,value))
print("outputs:")
outputs = self.model.get_outputs()
for key,value in outputs.items():
print("{}:{}".format(key,value))
# 获取模型的输入name
self.inputName = "images"
self.inputName = self.model.get_parameter_names()[0]
# 获取模型的输入尺寸
inputShape = inputShape=inputs[self.inputName].lens()
......@@ -64,7 +50,6 @@ class YOLOv5:
# 模型编译
self.model.compile(t=migraphx.get_target("gpu"), device_id=0) # device_id: 设置GPU设备,默认为0号设备
print("Success to compile")
def detect(self, image, input_shape=None):
if(self.isDynamic):
......@@ -74,9 +59,8 @@ class YOLOv5:
input_img = self.prepare_input(image)
# 执行推理
start = time.time()
result = self.model.run({self.inputName: input_img})
print('net forward time: {:.4f}'.format(time.time() - start))
# 模型输出结果后处理
boxes, scores, class_ids = self.process_output(result)
......@@ -211,6 +195,7 @@ if __name__ == '__main__':
# 静态推理
if args.staticInfer:
yolov5_Static(args.imgPath, args.staticModelPath, args.objectThreshold, args.confThreshold, args.nmsThreshold)
# 动态推理
if args.dynamicInfer:
yolov5_dynamic(args.imgFolderPath, args.dynamicModelPath, args.objectThreshold, args.confThreshold, args.nmsThreshold)
......
......@@ -16,16 +16,14 @@ DetectorYOLOV5::DetectorYOLOV5()
DetectorYOLOV5::~DetectorYOLOV5()
{
configurationFile.release();
}
ErrorCode DetectorYOLOV5::Initialize(InitializationParameterOfDetector initializationParameterOfDetector, bool dynamic)
{
// 读取配置文件
std::string configFilePath=initializationParameterOfDetector.configFilePath;
if(Exists(configFilePath)==false)
if(!Exists(configFilePath))
{
LOG_ERROR(stdout, "no configuration file!\n");
return CONFIG_FILE_NOT_EXIST;
......@@ -57,7 +55,7 @@ ErrorCode DetectorYOLOV5::Initialize(InitializationParameterOfDetector initializ
if(dynamic)
{
// 加载模型
if(Exists(modelPath)==false)
if(!Exists(modelPath))
{
LOG_ERROR(stdout,"%s not exist!\n",modelPath.c_str());
return MODEL_NOT_EXIST;
......@@ -69,18 +67,8 @@ ErrorCode DetectorYOLOV5::Initialize(InitializationParameterOfDetector initializ
LOG_INFO(stdout,"succeed to load model: %s\n",GetFileName(modelPath).c_str());
// 获取模型输入/输出节点信息
std::cout<<"inputs:"<<std::endl;
std::unordered_map<std::string, migraphx::shape> inputs=net.get_inputs();
for(auto i:inputs)
{
std::cout<<i.first<<":"<<i.second<<std::endl;
}
std::cout<<"outputs:"<<std::endl;
std::unordered_map<std::string, migraphx::shape> outputs=net.get_outputs();
for(auto i:outputs)
{
std::cout<<i.first<<":"<<i.second<<std::endl;
}
inputName=inputs.begin()->first;
inputShape=inputs.begin()->second;
int N=inputShape.lens()[0];
......@@ -95,7 +83,7 @@ ErrorCode DetectorYOLOV5::Initialize(InitializationParameterOfDetector initializ
else
{
// 加载模型
if(Exists(modelPath)==false)
if(!Exists(modelPath))
{
LOG_ERROR(stdout,"%s not exist!\n",modelPath.c_str());
return MODEL_NOT_EXIST;
......@@ -104,18 +92,8 @@ ErrorCode DetectorYOLOV5::Initialize(InitializationParameterOfDetector initializ
LOG_INFO(stdout,"succeed to load model: %s\n",GetFileName(modelPath).c_str());
// 获取模型输入/输出节点信息
std::cout<<"inputs:"<<std::endl;
std::unordered_map<std::string, migraphx::shape> inputs=net.get_inputs();
for(auto i:inputs)
{
std::cout<<i.first<<":"<<i.second<<std::endl;
}
std::cout<<"outputs:"<<std::endl;
std::unordered_map<std::string, migraphx::shape> outputs=net.get_outputs();
for(auto i:outputs)
{
std::cout<<i.first<<":"<<i.second<<std::endl;
}
inputName=inputs.begin()->first;
inputShape=inputs.begin()->second;
int N=inputShape.lens()[0];
......@@ -170,9 +148,7 @@ ErrorCode DetectorYOLOV5::Initialize(InitializationParameterOfDetector initializ
classNames.resize(yolov5Parameter.numberOfClasses);
}
return SUCCESS;
}
ErrorCode DetectorYOLOV5::Detect(const cv::Mat &srcImage, std::vector<std::size_t> &relInputShape, std::vector<ResultOfDetection> &resultsOfDetection, bool dynamic)
......
......@@ -71,11 +71,7 @@ void Sample_YOLOV5()
// 推理
std::vector<migraphxSamples::ResultOfDetection> predictions;
double time1 = cv::getTickCount();
detector.Detect(srcImage,inputShape,predictions,false);
double time2 = cv::getTickCount();
double elapsedTime = (time2 - time1)*1000 / cv::getTickFrequency();
LOG_INFO(stdout, "inference time:%f ms\n", elapsedTime);
// 获取推理结果
LOG_INFO(stdout,"========== Detection Results ==========\n");
......@@ -135,11 +131,7 @@ void Sample_YOLOV5_Dynamic()
{
// 推理
std::vector<migraphxSamples::ResultOfDetection> predictions;
double time1 = cv::getTickCount();
detector.Detect(srcImages[i], inputShapes[i], predictions, true);
double time2 = cv::getTickCount();
double elapsedTime = (time2 - time1)*1000 / cv::getTickFrequency();
LOG_INFO(stdout, "inference image%d time:%f ms\n", i, elapsedTime);
// 获取推理结果
LOG_INFO(stdout,"========== Detection Image%d Results ==========\n", i);
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment