YOLOV5.cpp 6.94 KB
Newer Older
liucong's avatar
liucong committed
1
2
#include <YOLOV5.h>

Your Name's avatar
Your Name committed
3
4
5
#include <migraphx/onnx.hpp>
#include <migraphx/gpu/target.hpp>
#include <migraphx/quantization.hpp>
liucong's avatar
liucong committed
6

Your Name's avatar
Your Name committed
7
8
9
10
11
12
13
#include <Filesystem.h>
#include <SimpleLog.h>


namespace migraphxSamples
{

liucong's avatar
liucong committed
14
DetectorYOLOV5::DetectorYOLOV5()
Your Name's avatar
Your Name committed
15
16
17
18
19
20
21
22
23
24
25
26
27
{

}

DetectorYOLOV5::~DetectorYOLOV5()
{

    configurationFile.release();
    
}

ErrorCode DetectorYOLOV5::Initialize(InitializationParameterOfDetector initializationParameterOfDetector)
{
liucong's avatar
liucong committed
28
29
30
    // 读取配置文件
    std::string configFilePath=initializationParameterOfDetector.configFilePath;
    if(Exists(configFilePath)==false)
Your Name's avatar
Your Name committed
31
    {
liucong's avatar
liucong committed
32
33
        LOG_ERROR(stdout, "no configuration file!\n");
        return CONFIG_FILE_NOT_EXIST;
Your Name's avatar
Your Name committed
34
    }
liucong's avatar
liucong committed
35
36
37
38
39
40
    if(!configurationFile.open(configFilePath, cv::FileStorage::READ))
    {
       LOG_ERROR(stdout, "fail to open configuration file\n");
       return FAIL_TO_OPEN_CONFIG_FILE;
    }
    LOG_INFO(stdout, "succeed to open configuration file\n");
Your Name's avatar
Your Name committed
41
42
    
    // 获取配置文件参数
liucong's avatar
liucong committed
43
44
45
    cv::FileNode netNode = configurationFile["DetectorYOLOV5"];
    std::string modelPath=(std::string)netNode["ModelPath"];
    std::string pathOfClassNameFile=(std::string)netNode["ClassNameFile"];
Your Name's avatar
Your Name committed
46
47
48
49
50
51
52
53
54
    yolov5Parameter.confidenceThreshold = (float)netNode["ConfidenceThreshold"];
    yolov5Parameter.nmsThreshold = (float)netNode["NMSThreshold"];
    yolov5Parameter.objectThreshold = (float)netNode["ObjectThreshold"];
    yolov5Parameter.numberOfClasses=(int)netNode["NumberOfClasses"];
    useFP16=(bool)(int)netNode["UseFP16"];

    // 加载模型
    if(Exists(modelPath)==false)
    {
liucong's avatar
liucong committed
55
        LOG_ERROR(stdout,"%s not exist!\n",modelPath.c_str());
Your Name's avatar
Your Name committed
56
57
58
        return MODEL_NOT_EXIST;
    }
    net = migraphx::parse_onnx(modelPath);
liucong's avatar
liucong committed
59
    LOG_INFO(stdout,"succeed to load model: %s\n",GetFileName(modelPath).c_str());
Your Name's avatar
Your Name committed
60
61

    // 获取模型输入属性
liucong's avatar
liucong committed
62
63
64
65
66
67
68
69
    std::unordered_map<std::string, migraphx::shape> inputMap=net.get_parameter_shapes();
    inputName=inputMap.begin()->first;
    inputShape=inputMap.begin()->second;
    int N=inputShape.lens()[0];
    int C=inputShape.lens()[1];
    int H=inputShape.lens()[2];
    int W=inputShape.lens()[3];
    inputSize=cv::Size(W,H);
Your Name's avatar
Your Name committed
70
71
72
73
74
75
76
77
78
79
80
81
82

    // 设置模型为GPU模式
    migraphx::target gpuTarget = migraphx::gpu::target{};

    // 量化    
    if(useFP16)
    {
        migraphx::quantize_fp16(net);
    }

    // 编译模型
    migraphx::compile_options options;
    options.device_id=0; // 设置GPU设备,默认为0号设备
liucong's avatar
liucong committed
83
    options.offload_copy=true;
Your Name's avatar
Your Name committed
84
    net.compile(gpuTarget,options);
liucong's avatar
liucong committed
85
    LOG_INFO(stdout,"succeed to compile model: %s\n",GetFileName(modelPath).c_str());
Your Name's avatar
Your Name committed
86

liucong's avatar
liucong committed
87
88
89
    // warm up
    std::unordered_map<std::string, migraphx::argument> inputData;
    inputData[inputName]=migraphx::argument{inputShape};
Your Name's avatar
Your Name committed
90
91
92
93
94
    net.eval(inputData);

    // 读取类别名
    if(!pathOfClassNameFile.empty())
    {
liucong's avatar
liucong committed
95
96
        std::ifstream classNameFile(pathOfClassNameFile);
        std::string line;
Your Name's avatar
Your Name committed
97
98
99
100
101
102
103
104
105
106
107
        while (getline(classNameFile, line))
        {
            classNames.push_back(line);
        }
    }
    else
    {
        classNames.resize(yolov5Parameter.numberOfClasses);
    }

    // log
liucong's avatar
liucong committed
108
109
110
111
112
113
    LOG_INFO(stdout,"InputSize:%dx%d\n",inputSize.width,inputSize.height);
    LOG_INFO(stdout,"InputName:%s\n",inputName.c_str());
    LOG_INFO(stdout,"ConfidenceThreshold:%f\n",yolov5Parameter.confidenceThreshold);
    LOG_INFO(stdout,"NMSThreshold:%f\n",yolov5Parameter.nmsThreshold);
    LOG_INFO(stdout,"objectThreshold:%f\n",yolov5Parameter.objectThreshold);
    LOG_INFO(stdout,"NumberOfClasses:%d\n",yolov5Parameter.numberOfClasses);
Your Name's avatar
Your Name committed
114
115
116
117
118
119
120
121
122

    return SUCCESS;

}

ErrorCode DetectorYOLOV5::Detect(const cv::Mat &srcImage, std::vector<ResultOfDetection> &resultsOfDetection)
{
    if(srcImage.empty()||srcImage.type()!=CV_8UC3)
    {
liucong's avatar
liucong committed
123
        LOG_ERROR(stdout, "image error!\n");
Your Name's avatar
Your Name committed
124
125
126
        return IMAGE_ERROR;
    }

liucong's avatar
liucong committed
127
    // 数据预处理并转换为NCHW格式
Your Name's avatar
Your Name committed
128
    cv::Mat inputBlob;
liucong's avatar
liucong committed
129
    cv::dnn::blobFromImage(srcImage,
Your Name's avatar
Your Name committed
130
131
132
                    inputBlob,
                    1 / 255.0,
                    inputSize,
liucong's avatar
liucong committed
133
                    cv::Scalar(0, 0, 0),
Your Name's avatar
Your Name committed
134
135
                    true,
                    false);
liucong's avatar
liucong committed
136
137
138

    // 创建输入数据
    std::unordered_map<std::string, migraphx::argument> inputData;
Your Name's avatar
Your Name committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    inputData[inputName]= migraphx::argument{inputShape, (float*)inputBlob.data};

    // 推理
    std::vector<migraphx::argument> inferenceResults = net.eval(inputData);

    // 获取推理结果
    std::vector<cv::Mat> outs;
    migraphx::argument result = inferenceResults[0]; 

    // 转换为cv::Mat
    migraphx::shape outputShape = result.get_shape();
    int shape[]={outputShape.lens()[0],outputShape.lens()[1],outputShape.lens()[2]};
    cv::Mat out(3,shape,CV_32F);
    memcpy(out.data,result.data(),sizeof(float)*outputShape.elements());
    outs.push_back(out);

    //获取先验框的个数
    int numProposal = outs[0].size[1];
    int numOut = outs[0].size[2];
    //变换输出的维度
    outs[0] = outs[0].reshape(0, numProposal);

    //生成先验框
    std::vector<float> confidences;
    std::vector<cv::Rect> boxes;
    std::vector<int> classIds;
    float ratioh = (float)srcImage.rows / inputSize.height, ratiow = (float)srcImage.cols / inputSize.width;

    //计算cx,cy,w,h,box_sore,class_sore
    int n = 0, rowInd = 0;
    float* pdata = (float*)outs[0].data;
    for (n = 0; n < numProposal; n++)
    {
        float boxScores = pdata[4];
        if (boxScores > yolov5Parameter.objectThreshold)
        {
            cv::Mat scores = outs[0].row(rowInd).colRange(5, numOut);
            cv::Point classIdPoint;
            double maxClassScore;
            cv::minMaxLoc(scores, 0, &maxClassScore, 0, &classIdPoint);
            maxClassScore *= boxScores;
            if (maxClassScore > yolov5Parameter.confidenceThreshold)
            {
                const int classIdx = classIdPoint.x;
                float cx = pdata[0] * ratiow;
                float cy = pdata[1] * ratioh;
                float w = pdata[2] * ratiow;
                float h = pdata[3] * ratioh;

                int left = int(cx - 0.5 * w);
                int top = int(cy - 0.5 * h);

                confidences.push_back((float)maxClassScore);
                boxes.push_back(cv::Rect(left, top, (int)(w), (int)(h)));
                classIds.push_back(classIdx);
            }
        }
        rowInd++;
        pdata += numOut;
    }

    //执行non maximum suppression消除冗余重叠boxes
    std::vector<int> indices;
liucong's avatar
liucong committed
202
    cv::dnn::NMSBoxes(boxes, confidences, yolov5Parameter.confidenceThreshold, yolov5Parameter.nmsThreshold, indices);
Your Name's avatar
Your Name committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    for (size_t i = 0; i < indices.size(); ++i)
    {
        int idx = indices[i];
        int classID=classIds[idx];
        string className=classNames[classID];
        float confidence=confidences[idx];
        cv::Rect box = boxes[idx];

        ResultOfDetection result;
        result.boundingBox=box;
        result.confidence=confidence;// confidence
        result.classID=classID; // label
        result.className=className;
        resultsOfDetection.push_back(result);
    }

    return SUCCESS;
}

}