qat.py 15.2 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: MIT
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.

import sys
import os

# Add the current directory to PYTHONPATH for yolov5s
sys.path.insert(0, os.path.abspath("."))
pydir = os.path.dirname(__file__)

import yaml
import collections
import warnings
import argparse
import json
from pathlib import Path

# PyTorch
import torch
import torch.nn as nn

# yolov5s
import val
from models.yolo import Model
from models.common import Conv
from utils.dataloaders import create_dataloader
from utils.downloads import attempt_download
from utils.general import init_seeds, check_dataset

import quantization.quantize as quantize
from copy import deepcopy


# Disable all warning
warnings.filterwarnings("ignore")
from models.yolo import DetectionModel

class SummaryTool:
    def __init__(self, file):
        self.file = file
        self.data = []

    def append(self, item):
        self.data.append(item)
        json.dump(self.data, open(self.file, "w"), indent=4)


def load_yolov5_model(weight, device) -> Model:
    if 'yolov5l' in weight:
        cfg = "models/yolov5l.yaml"
    elif 'yolov5m' in weight:
        cfg = "models/yolov5m.yaml"
    elif 'yolov5n' in weight:
        cfg = "models/yolov5n.yaml"
    elif 'yolov5s' in weight:
        cfg = "models/yolov5s.yaml"
    elif "yolov5x" in weight:
        cfg = "models/yolov5x.yaml"
    else:
        raise NotImplementedError("Only support yolov5[l, m, n, s, x]")
    
    model = DetectionModel(cfg=cfg).to(device)
    attempt_download(weight)
    weight = torch.load(weight, map_location=device)["model"].state_dict()
    model.load_state_dict(weight,strict=False)
    for m in model.modules():
        if type(m) is nn.Upsample:
            m.recompute_scale_factor = None  # torch 1.11.0 compatibility
        elif type(m) is Conv:
            m._non_persistent_buffers_set = set()  # pytorch 1.6.0 compatibility
            
    model.float()
    model.eval()

    with torch.no_grad():
        model.fuse()
    return model


# ================== 构建数据集 ==================================
def create_coco_train_dataloader(cocodir, batch_size=10):

    with open("data/hyps/hyp.scratch-low.yaml") as f:
        hyp = yaml.load(f, Loader=yaml.SafeLoader)  # load hyps

    loader = create_dataloader(
        f"{cocodir}/train2017.txt", 
        imgsz=640, 
        batch_size=batch_size, 
        augment=True, hyp=hyp, rect=False, cache=False, stride=32,pad=0, image_weights=False)[0]
    return loader


def create_coco_val_dataloader(cocodir, batch_size=10, keep_images=None):

    loader = create_dataloader(
        f"{cocodir}/val2017.txt", 
        imgsz=640, 
        batch_size=batch_size, 
        augment=False, hyp=None, rect=True, cache=False,stride=32,pad=0.5, image_weights=False)[0]

    def subclass_len(self):
        if keep_images is not None:
            return keep_images
        return len(self.img_files)

    loader.dataset.__len__ = subclass_len
    return loader


# =======================在coco上测试模型性能=============================
def evaluate_coco(model, dataloader, using_cocotools = False, save_dir=".", conf_thres=0.001, iou_thres=0.65):

    if save_dir and os.path.dirname(save_dir) != "":
        os.makedirs(os.path.dirname(save_dir), exist_ok=True)
    
    model = deepcopy(model)
    return val.run(
        check_dataset("data/coco.yaml"), 
        save_dir=Path(save_dir),
        dataloader=dataloader, conf_thres=conf_thres,iou_thres=iou_thres,model=model,
        plots=False,save_json=using_cocotools)[0][3]
    

# ============================= 导出onnx模型 ======================================
def export_onnx(model : Model, file, size=640, dynamic_batch=False, noanchor=False):

    device = next(model.parameters()).device
    model.float()
    
    dummy = torch.zeros(1, 3, size, size, device=device)
    model.model[-1].concat = True
    grid_old_func = model.model[-1]._make_grid
    model.model[-1]._make_grid = lambda *args: [torch.from_numpy(item.cpu().data.numpy()).to(item.device) for item in grid_old_func(*args)]
    
    if noanchor:
        def hook_forward(self, x):
            for i in range(self.nl):
                x[i] = self.m[i](x[i])
                bs, _, ny, nx = map(int, x[i].shape)
                #x[i] = x[i].view(bs, self.na, self.no, ny * nx).permute(0, 3, 1, 2).contiguous()
            return x

        model.model[-1].__class__.forward = hook_forward

        quantize.export_onnx(model, dummy, file, opset_version=13, 
            input_names=["images"], output_names=["s8", "s16", "s32"], 
            dynamic_axes={"images": {0: "batch"}, "s32": {0: "batch"}, "s16": {0: "batch"}, "s8": {0: "batch"}} if dynamic_batch else None
        )
    else:
        quantize.export_onnx(model, dummy, file, opset_version=13, 
            input_names=["images"], output_names=["outputs"], 
            dynamic_axes={"images": {0: "batch"}, "outputs": {0: "batch"}} if dynamic_batch else None
        )
    model.model[-1].concat = False
    model.model[-1]._make_grid = grid_old_func


def cmd_quantize(weight, cocodir, device, ignore_policy, save_ptq, save_qat, supervision_stride, iters, eval_origin, eval_ptq, all_node_with_qdq):
    quantize.initialize(all_node_with_qdq=all_node_with_qdq)

    if save_ptq and os.path.dirname(save_ptq) != "":
        os.makedirs(os.path.dirname(save_ptq), exist_ok=True)

    if save_qat and os.path.dirname(save_qat) != "":
        os.makedirs(os.path.dirname(save_qat), exist_ok=True)
    
    device  = torch.device(device)

    model = load_yolov5_model(weight, device)
    train_dataloader = create_coco_train_dataloader(cocodir)
    val_dataloader   = create_coco_val_dataloader(cocodir)
    quantize.replace_bottleneck_forward(model)
    quantize.replace_to_quantization_module(model, ignore_policy=ignore_policy, all_node_with_qdq=all_node_with_qdq)
    if not all_node_with_qdq:
        quantize.apply_custom_rules_to_quantizer(model, export_onnx)
    quantize.calibrate_model(model, train_dataloader, device)
    json_save_dir = "." if os.path.dirname(save_ptq) == "" else os.path.dirname(save_ptq)
    summary_file = os.path.join(json_save_dir, "summary.json")
    summary = SummaryTool(summary_file)

    if eval_origin:
        print("Evaluate Origin...")
        with quantize.disable_quantization(model):
            ap = evaluate_coco(model, val_dataloader, True, json_save_dir)
            summary.append(["Origin", ap])
            
    if save_ptq:
        print(f"Save ptq model to {save_ptq}")
        torch.save({"model": model}, save_ptq)

    if eval_ptq:
        print("Evaluate PTQ...")
        with quantize.disable_quantization(model.model[24]): #During ONNX export, the model is pruned, so quantization of that layer needs to be turned off when validating accuracy.
            ap = evaluate_coco(model, val_dataloader, True, json_save_dir)
            summary.append(["PTQ", ap])


    if save_qat is None:
        print("Done as save_qat is None.")
        return

    best_ap = 0
    def per_epoch(model, epoch, lr):

        nonlocal best_ap
        with quantize.disable_quantization(model.model[24]):
            ap = evaluate_coco(model, val_dataloader, True, json_save_dir)
            summary.append([f"QAT{epoch}", ap])

        if ap > best_ap:
            print(f"Save qat model to {save_qat} @ {ap:.5f}")
            best_ap = ap
            torch.save({"model": model}, save_qat)

    def preprocess(datas):
        return datas[0].to(device).float() / 255.0

    def supervision_policy():
        supervision_list = []
        for item in model.model:
            supervision_list.append(id(item))

        keep_idx = list(range(0, len(model.model) - 1, supervision_stride))
        keep_idx.append(len(model.model) - 2)
        def impl(name, module):
            if id(module) not in supervision_list: return False
            idx = supervision_list.index(id(module))
            if idx in keep_idx:
                print(f"Supervision: {name} will compute loss with origin model during QAT training")
            else:
                print(f"Supervision: {name} no compute loss during QAT training, that is unsupervised only and doesn't mean don't learn")
            return idx in keep_idx
        return impl

    quantize.finetune(
        model, train_dataloader, per_epoch, early_exit_batchs_per_epoch=iters, 
        preprocess=preprocess, supervision_policy=supervision_policy())


def cmd_export(weight, save, size, dynamic, noanchor, noqadd):
    
    quantize.initialize()
    if save is None:
        name = os.path.basename(weight)
        name = name[:name.rfind('.')]
        save = os.path.join(os.path.dirname(weight), name + ".onnx")
        
    model = torch.load(weight, map_location="cpu")["model"]
    if not noqadd:
        quantize.replace_bottleneck_forward(model)

    export_onnx(model, save, size, dynamic_batch=dynamic, noanchor=noanchor)
    print(f"Save onnx to {save}")


def cmd_sensitive_analysis(weight, device, cocodir, summary_save, num_image, model):

    quantize.initialize()
    device  = torch.device(device)
    # model   = load_yolov5s_model(weight, device)
    model = load_yolov5_model(model, weight, device)
    train_dataloader = create_coco_train_dataloader(cocodir)
    val_dataloader   = create_coco_val_dataloader(cocodir, keep_images=None if num_image is None or num_image < 1 else num_image)
    quantize.replace_to_quantization_module(model)
    quantize.calibrate_model(model, train_dataloader)

    summary = SummaryTool(summary_save)
    print("Evaluate PTQ...")
    ap = evaluate_coco(model, val_dataloader)
    summary.append([ap, "PTQ"])

    print("Sensitive analysis by each layer...")
    for i in range(0, len(model.model)):
        layer = model.model[i]
        if quantize.have_quantizer(layer):
            print(f"Quantization disable model.{i}")
            quantize.disable_quantization(layer).apply()
            ap = evaluate_coco(model, val_dataloader)
            summary.append([ap, f"model.{i}"])
            quantize.enable_quantization(layer).apply()
        else:
            print(f"ignore model.{i} because it is {type(layer)}")
    
    summary = sorted(summary.data, key=lambda x:x[0], reverse=True)
    print("Sensitive summary:")
    for n, (ap, name) in enumerate(summary[:10]):
        print(f"Top{n}: Using fp16 {name}, ap = {ap:.5f}")



def cmd_test(weight, device, cocodir, confidence, nmsthres, model):

    device  = torch.device(device)
    # model   = load_yolov5s_model(weight, device)
    model = load_yolov5_model(model, weight, device)
    val_dataloader   = create_coco_val_dataloader(cocodir)
    evaluate_coco(model, val_dataloader, True, conf_thres=confidence, iou_thres=nmsthres)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(prog='qat.py')
    subps  = parser.add_subparsers(dest="cmd")
    exp    = subps.add_parser("export", help="Export weight to onnx file")
    exp.add_argument("weight", type=str, default="yolov5s.pt", help="export pt file")
    exp.add_argument("--save", type=str, required=False, help="export onnx file")
    exp.add_argument("--size", type=int, default=640, help="export input size")
    exp.add_argument("--dynamic", action="store_true", help="export dynamic batch")
    exp.add_argument("--noanchor", action="store_true", help="export no anchor nodes")
    exp.add_argument("--noqadd", action="store_true", help="export do not add QuantAdd")

    qat = subps.add_parser("quantize", help="PTQ/QAT finetune ...")
    qat.add_argument("weight", type=str, nargs="?", default="yolov5s.pt", help="weight file")
    qat.add_argument("--cocodir", type=str, default="datasets/coco", help="coco directory")
    qat.add_argument("--device", type=str, default="cuda:0", help="device")
    qat.add_argument("--ignore-policy", type=str, default="None", help="regx")
    # qat.add_argument("--ignore-policy", type=str, default="model\.24\.m\.(.*)", help="regx")
    qat.add_argument("--ptq", type=str, default="ptq.pt", help="file")
    qat.add_argument("--qat", type=str, default=None, help="file")
    qat.add_argument("--supervision-stride", type=int, default=1, help="supervision stride")
    qat.add_argument("--iters", type=int, default=200, help="iters per epoch")
    qat.add_argument("--eval-origin", action="store_true", help="do eval for origin model")
    qat.add_argument("--eval-ptq", action="store_true", help="do eval for ptq model")
    qat.add_argument("--all-node-with-qdq", action="store_true", help="insert qdq nodes for SiLU, Concat, Add")
    
    sensitive = subps.add_parser("sensitive", help="Sensitive layer analysis")
    sensitive.add_argument("weight", type=str, nargs="?", default="yolov5s.pt", help="weight file")
    sensitive.add_argument("--device", type=str, default="cuda:0", help="device")
    sensitive.add_argument("--cocodir", type=str, default="datasets/coco", help="coco directory")
    sensitive.add_argument("--summary", type=str, default="sensitive-summary.json", help="summary save file")
    sensitive.add_argument("--num-image", type=int, default=None, help="number of image to evaluate")

    testcmd = subps.add_parser("test", help="Do evaluate")
    testcmd.add_argument("weight", type=str, default="yolov5s.pt", help="weight file")
    testcmd.add_argument("--cocodir", type=str, default="datasets/coco", help="coco directory")
    testcmd.add_argument("--device", type=str, default="cuda:0", help="device")
    testcmd.add_argument("--confidence", type=float, default=0.001, help="confidence threshold")
    testcmd.add_argument("--nmsthres", type=float, default=0.65, help="nms threshold")

    args = parser.parse_args()
    init_seeds(57)

    if args.cmd == "export":
        cmd_export(args.weight, args.save, args.size, args.dynamic, args.noanchor, args.noqadd)
    elif args.cmd == "quantize":
        print(args) 
        cmd_quantize(
            args.weight, args.cocodir, args.device, args.ignore_policy, 
            args.ptq, args.qat, args.supervision_stride, args.iters,
            args.eval_origin, args.eval_ptq, args.all_node_with_qdq,
        )
    elif args.cmd == "sensitive":
        cmd_sensitive_analysis(args.weight, args.device, args.cocodir, args.summary, args.num_image)
    elif args.cmd == "test":
        cmd_test(args.weight, args.device, args.cocodir, args.confidence, args.nmsthres)
    else:
        parser.print_help()