main.py 6.99 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import argparse
import os
import sys
import time
from copy import deepcopy
from pathlib import Path
import quantization.quantize as quantize
from scripts.qat import export_onnx, create_coco_train_dataloader, create_coco_val_dataloader, evaluate_coco
from models.common import Conv

import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import yaml
from tqdm import tqdm
from models.yolo import Model
from tqdm import tqdm
from utils.loss import ComputeLoss
from utils.dataloaders import create_dataloader
from utils.torch_utils import (
    smart_optimizer,
)

from utils.general import (
    LOGGER,
    check_dataset,
    check_yaml,
    colorstr,
    labels_to_class_weights,
)

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative


# ================== 构建数据集 ==================================
def create_coco_train_dataloader(cocodir, batch_size=10):

    with open("data/hyps/hyp.scratch-low.yaml") as f:
        hyp = yaml.load(f, Loader=yaml.SafeLoader)  # load hyps

    loader, dataset = create_dataloader(
        f"{cocodir}/train2017.txt", 
        imgsz=640, 
        batch_size=batch_size, 
        augment=True, hyp=hyp, rect=False, cache=False, stride=32,pad=0, image_weights=False)
    return loader, dataset


def create_coco_val_dataloader(cocodir, batch_size=10, keep_images=None):

    loader, dataset = create_dataloader(
        f"{cocodir}/val2017.txt", 
        imgsz=640, 
        batch_size=32, 
        augment=False, hyp=None, rect=True, cache=False,stride=32,pad=0.5, image_weights=False)

    def subclass_len(self):
        if keep_images is not None:
            return keep_images
        return len(self.img_files)

    loader.dataset.__len__ = subclass_len
    return loader, dataset


def load_yolov5_model(weight, device) -> Model:
    if 'yolov5l' in weight:
        cfg = "models/yolov5l.yaml"
    elif 'yolov5m' in weight:
        cfg = "models/yolov5m.yaml"
    elif 'yolov5n' in weight:
        cfg = "models/yolov5n.yaml"
    elif 'yolov5s' in weight:
        cfg = "models/yolov5s.yaml"
    elif "yolov5x" in weight:
        cfg = "models/yolov5x.yaml"
    else:
        raise NotImplementedError("Only support yolov5[l, m, n, s, x]")
    
    model = Model(cfg=cfg).to(device)
    weight = torch.load(weight, map_location=device)["model"].state_dict()
    model.load_state_dict(weight,strict=False)
    for m in model.modules():
        if type(m) is nn.Upsample:
            m.recompute_scale_factor = None  # torch 1.11.0 compatibility
        elif type(m) is Conv:
            m._non_persistent_buffers_set = set()  # pytorch 1.6.0 compatibility
            
    model.float()
    model.eval()

    with torch.no_grad():
        model.fuse()
    return model


def qat(hyp, opt, device):
    # 加载超参数
    if isinstance(hyp, str):
        with open(hyp, errors="ignore") as f:
            hyp = yaml.safe_load(f)  # load hyps dict
    LOGGER.info(colorstr("hyperparameters: ") + ", ".join(f"{k}={v}" for k, v in hyp.items()))
    opt.hyp = hyp.copy()  # for saving hyps to checkpoints
    
    # ========================== 加载数据集 ==============================
    data_dict = check_dataset(opt.data)
    nc = int(data_dict["nc"])
    names = data_dict["names"]
    
    train_dataloader, dataset = create_coco_train_dataloader(opt.cocodir, opt.batch_size)
    test_dataloader, _ = create_coco_val_dataloader(opt.cocodir, opt.batch_size)

    # =========================== 原始模型及属性 ==============================
    model = load_yolov5_model(opt.weights, device)
    
    nl = model.model[-1].nl
    hyp["box"] *= 3 / nl  # scale to layers
    hyp["cls"] *= nc / 80 * 3 / nl  # scale to classes and layers
    hyp["obj"] *= (opt.imgsz / 640) ** 2 * 3 / nl  # scale to image size and layers
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names
    
    # =========================== QAT模型 ===============
    quantize.replace_bottleneck_forward(model)
    quantize.replace_to_quantization_module(model, ignore_policy=None, all_node_with_qdq=opt.all_node_with_qdq)
    if not opt.all_node_with_qdq:
        quantize.apply_custom_rules_to_quantizer(model, export_onnx)
    quantize.calibrate_model(model, train_dataloader, device)
    
    # # ========================== 训练 ====================
    compute_loss = ComputeLoss(model)  # init loss class
    # optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
    optimizer = smart_optimizer(model, 'SGD', 1e-3, 0.9, 1e-5)
    
    for epoch in tqdm(range(1, opt.epochs+1)):
        model.train()
        for i, (imgs, targets, paths, _) in enumerate(train_dataloader):
            pred = model(imgs.to(device))
            loss, loss_items = compute_loss(pred, targets.to(device))

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            
        with quantize.disable_quantization(model.model[24]):
            ap = evaluate_coco(model, test_dataloader, True)
            
    try:
        save_path = "checkpoints/qat/yolov5s_qat.pt"
        if os.path.isfile(save_path):
            os.remove(save_path)
    except Exception as e:
        pass
    finally:
        torch.save(model, save_path)
    

def parse_opt(known=False):
    """Parses command-line arguments for YOLOv5 training, validation, and testing."""
    parser = argparse.ArgumentParser()
    parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="initial weights path")
    parser.add_argument("--cfg", type=str, default="", help="model.yaml path")
    parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
    parser.add_argument("--cocodir", type=str, default="/home/temp/coco2017")
    parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path")
    parser.add_argument("--epochs", type=int, default=5, help="total training epochs")
    parser.add_argument("--batch-size", type=int, default=128, help="total batch size for all GPUs, -1 for autobatch")
    parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)")
    parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor")
    parser.add_argument("--all_node_with_qdq", action="store_true")
    parser.add_argument("--anchors", type=int, default=3)
    
    parser.add_argument("--nc", type=int, default=80)

    return parser.parse_known_args()[0] if known else parser.parse_args()


if __name__ == "__main__":
    opt = parse_opt()
    opt.cfg, opt.hyp, opt.weights = (
        check_yaml(opt.cfg),
        check_yaml(opt.hyp),
        str(opt.weights),
    )  # checks
    
    qat(opt.hyp, opt, device=torch.device("cuda:2"))