"...megatron/model/classification.py" did not exist on "aebde649e30016aa33b2e1345cb22210a2e49b04"
evaluate.py 12.5 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import sys
import os

sys.path.insert(0, os.path.abspath("."))
pydir = os.path.dirname(__file__)

import warnings
import argparse
from pathlib import Path

import cv2
import torch
import torch.nn as nn

import numpy as np
import val
from models.common import Conv
from tqdm import tqdm

# Disable all warning
warnings.filterwarnings("ignore")
from models.yolo import DetectionModel

from utils.general import non_max_suppression, xywhn2xyxy, xywh2xyxy, scale_boxes, xyxy2xywhn

from utils.metrics import ConfusionMatrix, ap_per_class
import time
import onnxruntime

from trt_utils.trt import TrtModel
import pycuda.driver as cuda

from utils.dataloaders import LoadImagesAndLabels
from torch.utils.data import DataLoader


names = {0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 
         10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 
         20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 
         30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 
         40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 
         51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 
         61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 
         71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'}


def draw_boxes(model,
               image_path,
               mtype):
    device = torch.device("cuda")
    image = cv2.imread(image_path)
    w, h, c = image.shape
    
    image_input = cv2.resize(image, (640, 640))
    image_input = image_input[:, :, ::-1].transpose(2, 1, 0).astype(np.float32)[np.newaxis, ...] / 255.
    
    if mtype == 'ori' or mtype == 'qat':
        image_input = torch.from_numpy(image_input).to(device)
    
    pred = model(image_input)
    
    if mtype == "trt":
        pred = pred[-1].reshape(1, -1, 85)
    
    if mtype == "trt" or mtype == "onnx":
        preds = non_max_suppression(torch.from_numpy(pred).to(torch.device("cuda")), conf_thres=0.1, iou_thres=0.65, max_det=1000, agnostic=False)
    else:
        preds = non_max_suppression(pred, conf_thres=0.1, iou_thres=0.65, max_det=1000, agnostic=False)

    for bboxes in preds:
        for bbox in bboxes:
            bbox = xyxy2xywhn(bbox)
            bbox = xywhn2xyxy(bbox, w, h)
            bbox = bbox.cpu().numpy()
            y1,x1,y2,x2,conf,cid = bbox
            cv2.rectangle(image, (int(x1),int(y1)), (int(x2),int(y2)), (0, 255, 0), 2)
            label = f'Class: {names[int(cid)]}, Confidence: {conf:.2f}'
            cv2.putText(image, label, (int(x1), int(y1) - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1, cv2.LINE_AA)
    
    cv2.imwrite(f"{mtype}.png", image)
    
    del model
    torch.cuda.empty_cache()
    

def compute_metric(model,
                   dataloader,
                   mtype):
    
    device = torch.device("cuda")
    iouv = torch.linspace(0.5, 0.95, 10, device=device)
    niou = iouv.numel()
    stats = []
    seen = 0
    total_model_time = 0.
    
    for i in range(2):
        desc = "warmup"

        if i == 1:
            desc = "val"

        progress_bar = tqdm(dataloader, total=len(dataloader), desc=desc)
        
        for data, targets, paths, shapes in progress_bar:
            data = data.float() / 255.
            
            nb, _, height, width = data.shape
            
            if mtype == 'ori' or mtype == 'qat':
                data, targets = data.to(device), targets.to(device)
            elif mtype == 'onnx' or mtype == 'trt':
                data, targets = data.numpy(), targets.to(device)
            else:
                raise NotImplemented
            
            start_time = time.time()
            pred = model(data)
            end_time = time.time()
            
            if i == 0:
                continue
            
            total_model_time += end_time - start_time
            
            if mtype == 'trt':
                pred = torch.from_numpy(pred[-1].reshape(1, -1, 85)).to(device)
            elif mtype == "onnx":
                pred = torch.from_numpy(pred).to(device)
            else:
                pass
            
            preds = non_max_suppression(pred, conf_thres=0.001, iou_thres=0.6, max_det=300, multi_label=True, agnostic=False)
            targets[:, 2:] *= torch.tensor((width, height, width, height), device=device)
            
            for si, pred in enumerate(preds):
                seen += 1
                labels = targets[targets[:, 0] == si, 1:]
                nl, npr = labels.shape[0], pred.shape[0]  # number of labels, predictions
                path, shape = Path(paths[si]), shapes[si][0]
                correct = torch.zeros(npr, niou, dtype=torch.bool, device=device)  # init

                if npr == 0:
                    if nl:
                        stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0]))
                    continue

                # Predictions
                predn = pred.clone()
                scale_boxes(data[si].shape[1:], predn[:, :4], shape, shapes[si][1])  # native-space pred

                # Evaluate
                if nl:
                    tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
                    scale_boxes(data[si].shape[1:], tbox, shape, shapes[si][1])  # native-space labels
                    labelsn = torch.cat((labels[:, 0:1], tbox), 1).to(device)  # native-space labels
                    correct = val.process_batch(predn, labelsn, iouv)
                stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0]))  # (correct, conf, pcls, tcls)
                
    # Compute metrics
    stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)]  # to numpy
    if len(stats) and stats[0].any():
        tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, names=names)
        ap50, ap = ap[:, 0], ap.mean(1)  # AP@0.5, AP@0.5:0.95
        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
    
    s = ("%22s" + "%11s" * 6) % ("Class", "Images", "P", "R", "mAP50", "mAP50-95", "Time")
    pf = "%22s" + "%11i" * 1 + "%11.3g" * 5  # print format
    print(s)
    print(pf % ("all", seen, mp, mr, map50, map, total_model_time / seen))

class ONNX:
    
    def __init__(self, 
                 onnx_path, 
                 device):
        
        sess_options = onnxruntime.SessionOptions()

        if onnxruntime.get_device() == "GPU":
            providers = ['CUDAExecutionProvider']
        else:
            providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
        
        sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_EXTENDED
        
        self.session = onnxruntime.InferenceSession(onnx_path, sess_options, providers=providers, provider_options=[{"device_id": 0}]*len(providers))

        self.input_name = self.get_input_name()
        self.output_name = self.get_output_name()
    
    def get_input_name(self):
        input_name = []
        for node in self.session.get_inputs():
            input_name.append(node.name)
        return input_name
    
    def get_output_name(self):
        output_name = []
        for node in self.session.get_outputs():
            output_name.append(node.name)
        return output_name

    def get_input_feed(self, image):
        input_feed = {}
        for name in self.input_name:
            input_feed[name] = image
        
        return input_feed

    def inference(self, img):
        input_feed = self.get_input_feed(img)
        pred = self.session.run(None, input_feed)[0]
        
        return pred


class TorchModel:
    
    def __init__(self, 
                 weight,
                 device):
        self.device = device
        self.model = self.load_model(weight)
    
    def load_model(self, weight):
        # def load_yolov5_model(model: str, weight, device) -> Model:
        if 'yolov5l' in weight:
            cfg = "models/yolov5l.yaml"
        elif 'yolov5m' in weight:
            cfg = "models/yolov5m.yaml"
        elif 'yolov5n' in weight:
            cfg = "models/yolov5n.yaml"
        elif 'yolov5s' in weight:
            cfg = "models/yolov5s.yaml"
        elif "yolov5x" in weight:
            cfg = "models/yolov5x.yaml"
        else:
            raise NotImplementedError("Only support yolov5[l, m, n, s, x]")
        
        model = DetectionModel(cfg=cfg).to(self.device)
        weight = torch.load(weight, map_location="cpu")["model"].state_dict()
        model.load_state_dict(weight,strict=False)
        for m in model.modules():
            if type(m) is nn.Upsample:
                m.recompute_scale_factor = None  # torch 1.11.0 compatibility
            elif type(m) is Conv:
                m._non_persistent_buffers_set = set()  # pytorch 1.6.0 compatibility
                
        model.float()
        model.eval()

        with torch.no_grad():
            model.fuse()
        return model

    @torch.no_grad()
    def inference(self, img):
        return self.model(img)
        

def main_eval(args):
    dataloader =  DataLoader(LoadImagesAndLabels(args.data_list,
                                                 img_size=640, augment=False, rect=False, cache_images=True, single_cls=False),
                             shuffle=False, batch_size=1, collate_fn=LoadImagesAndLabels.collate_fn)
    
    if args.mtype == "ori":
    # # ================ 原始模型 =======================        
        device = torch.device(f"cuda")
        model = TorchModel(args.weight, device).inference
    
    elif args.mtype=='qat':
        # =============== qat 模型 ==========================
        device = torch.device(f"cuda")
        model = torch.load(args.weight, map_location="cpu")['model']
        model.to(device)
    
    elif args.mtype=='onnx':
        # =============== onnx 模型 ======================
        device = torch.device(f"cuda")
        model = ONNX(args.weight, 0).inference
    
    # ================ trt 模型 ======================
    elif args.mtype=='trt':
        cuda.init()
        model = TrtModel(args.weight)
        
    compute_metric(model, dataloader, args.mtype)
    del model
    torch.cuda.empty_cache()


def main_draw(args):
    if args.mtype == "ori":
    # # ================ 原始模型 =======================        
        device = torch.device(f"cuda")
        model = TorchModel(args.weight, device).inference
    
    elif args.mtype=='qat':
        # =============== qat 模型 ==========================
        device = torch.device(f"cuda")
        model = torch.load(args.weight, map_location="cpu")['model']
        model.to(device)
    
    elif args.mtype=='onnx':
        # =============== onnx 模型 ======================
        device = torch.device(f"cuda")
        model = ONNX(args.weight, 0).inference
    
    # ================ trt 模型 ======================
    elif args.mtype=='trt':
        cuda.init()
        model = TrtModel(args.weight)
        
    draw_boxes(model, args.image_path, args.mtype)
    del model
    torch.cuda.empty_cache()
    

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    
    subps = parser.add_subparsers(dest="cmd")
    
    eval_m = subps.add_parser("eval")
    eval_m.add_argument("--data_list", default="/home/temp/coco2017/val2017.txt", type=str, help="测试数据列表文件路径")
    eval_m.add_argument("--weight", required=True, type=str, help="权重路径")
    eval_m.add_argument("--mtype", required=True, type=str, choices=['onnx', 'qat', 'trt', 'ori'],
                        help="模型类型,ori原始模型,qat带有量化节点的模型,onnx模型,tensorrt模型.")
    
    draw = subps.add_parser("draw")
    draw.add_argument("--weight", required=True, type=str, help="输入trt权重路径")
    draw.add_argument("--image_path", required=True, type=str, help="待检测图片")
    draw.add_argument("--mtype", required=True, type=str)
    
    args = parser.parse_args()
    
    if args.cmd == "eval":
        print(args)
        main_eval(args)
    elif args.cmd == "draw":
        print(args)
        main_draw(args)