YOLOV3.cpp 7.02 KB
Newer Older
liucong's avatar
liucong committed
1
#include <YOLOV3.h>
Your Name's avatar
Your Name committed
2
3
4
5
6
7
8
9
10
#include <migraphx/onnx.hpp>
#include <migraphx/gpu/target.hpp>
#include <migraphx/quantization.hpp>
#include <Filesystem.h>
#include <SimpleLog.h>

namespace migraphxSamples
{

liucong's avatar
liucong committed
11
DetectorYOLOV3::DetectorYOLOV3()
Your Name's avatar
Your Name committed
12
13
14
15
16
17
18
19
20
21
22
{

}

DetectorYOLOV3::~DetectorYOLOV3()
{
    configurationFile.release();
}

ErrorCode DetectorYOLOV3::Initialize(InitializationParameterOfDetector initializationParameterOfDetector)
{
liucong's avatar
liucong committed
23
24
    // 读取配置文件
    std::string configFilePath=initializationParameterOfDetector.configFilePath;
liucong's avatar
liucong committed
25
    if(!Exists(configFilePath))
Your Name's avatar
Your Name committed
26
    {
liucong's avatar
liucong committed
27
28
29
30
31
32
33
        LOG_ERROR(stdout, "no configuration file!\n");
        return CONFIG_FILE_NOT_EXIST;
    }
    if(!configurationFile.open(configFilePath, cv::FileStorage::READ))
    {
       LOG_ERROR(stdout, "fail to open configuration file\n");
       return FAIL_TO_OPEN_CONFIG_FILE;
Your Name's avatar
Your Name committed
34
    }
liucong's avatar
liucong committed
35
    LOG_INFO(stdout, "succeed to open configuration file\n");
Your Name's avatar
Your Name committed
36
37
    
    // 获取配置文件参数
liucong's avatar
liucong committed
38
39
40
    cv::FileNode netNode = configurationFile["DetectorYOLOV3"];
    std::string modelPath=(std::string)netNode["ModelPath"];
    std::string pathOfClassNameFile=(std::string)netNode["ClassNameFile"];
Your Name's avatar
Your Name committed
41
42
43
44
45
46
47
    yolov3Parameter.confidenceThreshold = (float)netNode["ConfidenceThreshold"];
    yolov3Parameter.nmsThreshold = (float)netNode["NMSThreshold"];
    yolov3Parameter.objectThreshold = (float)netNode["ObjectThreshold"];
    yolov3Parameter.numberOfClasses=(int)netNode["NumberOfClasses"];
    useFP16=(bool)(int)netNode["UseFP16"];

    // 加载模型
liucong's avatar
liucong committed
48
    if(!Exists(modelPath))
Your Name's avatar
Your Name committed
49
    {
liucong's avatar
liucong committed
50
        LOG_ERROR(stdout,"%s not exist!\n",modelPath.c_str());
Your Name's avatar
Your Name committed
51
52
53
        return MODEL_NOT_EXIST;
    }
    net = migraphx::parse_onnx(modelPath);
liucong's avatar
liucong committed
54
    LOG_INFO(stdout,"succeed to load model: %s\n",GetFileName(modelPath).c_str());
Your Name's avatar
Your Name committed
55

liucong's avatar
liucong committed
56
57
58
59
60
    // 获取模型输入/输出节点信息
    std::unordered_map<std::string, migraphx::shape> inputs=net.get_inputs();
    std::unordered_map<std::string, migraphx::shape> outputs=net.get_outputs();
    inputName=inputs.begin()->first;
    inputShape=inputs.begin()->second;
liucong's avatar
liucong committed
61
62
63
64
65
    int N=inputShape.lens()[0];
    int C=inputShape.lens()[1];
    int H=inputShape.lens()[2];
    int W=inputShape.lens()[3];
    inputSize=cv::Size(W,H);
Your Name's avatar
Your Name committed
66
67
68
69
70
71
72
73
74
75
76
77
78

    // 设置模型为GPU模式
    migraphx::target gpuTarget = migraphx::gpu::target{};

    // 量化    
    if(useFP16)
    {
        migraphx::quantize_fp16(net);
    }

    // 编译模型
    migraphx::compile_options options;
    options.device_id=0; // 设置GPU设备,默认为0号设备
liucong's avatar
liucong committed
79
    options.offload_copy=true;
Your Name's avatar
Your Name committed
80
    net.compile(gpuTarget,options);
liucong's avatar
liucong committed
81
    LOG_INFO(stdout,"succeed to compile model: %s\n",GetFileName(modelPath).c_str());
Your Name's avatar
Your Name committed
82

liucong's avatar
liucong committed
83
84
85
    // warm up
    std::unordered_map<std::string, migraphx::argument> inputData;
    inputData[inputName]=migraphx::argument{inputShape};
Your Name's avatar
Your Name committed
86
87
88
89
90
    net.eval(inputData);

    // 读取类别名
    if(!pathOfClassNameFile.empty())
    {
liucong's avatar
liucong committed
91
92
        std::ifstream classNameFile(pathOfClassNameFile);
        std::string line;
Your Name's avatar
Your Name committed
93
94
95
96
97
98
99
100
101
102
103
        while (getline(classNameFile, line))
        {
            classNames.push_back(line);
        }
    }
    else
    {
        classNames.resize(yolov3Parameter.numberOfClasses);
    }

    // log
liucong's avatar
liucong committed
104
105
106
107
108
109
    LOG_INFO(stdout,"InputSize:%dx%d\n",inputSize.width,inputSize.height);
    LOG_INFO(stdout,"InputName:%s\n",inputName.c_str());
    LOG_INFO(stdout,"ConfidenceThreshold:%f\n",yolov3Parameter.confidenceThreshold);
    LOG_INFO(stdout,"NMSThreshold:%f\n",yolov3Parameter.nmsThreshold);
    LOG_INFO(stdout,"objectThreshold:%f\n",yolov3Parameter.objectThreshold);
    LOG_INFO(stdout,"NumberOfClasses:%d\n",yolov3Parameter.numberOfClasses);
Your Name's avatar
Your Name committed
110
111
112
113
114
115
116
117
118

    return SUCCESS;

}

ErrorCode DetectorYOLOV3::Detect(const cv::Mat &srcImage, std::vector<ResultOfDetection> &resultsOfDetection)
{
    if(srcImage.empty()||srcImage.type()!=CV_8UC3)
    {
liucong's avatar
liucong committed
119
        LOG_ERROR(stdout, "image error!\n");
Your Name's avatar
Your Name committed
120
121
122
        return IMAGE_ERROR;
    }

liucong's avatar
liucong committed
123
    // 数据预处理并转换为NCHW格式
Your Name's avatar
Your Name committed
124
    cv::Mat inputBlob;
liucong's avatar
liucong committed
125
    cv::dnn::blobFromImage(srcImage,
Your Name's avatar
Your Name committed
126
127
128
                    inputBlob,
                    1 / 255.0,
                    inputSize,
liucong's avatar
liucong committed
129
                    cv::Scalar(0, 0, 0),
Your Name's avatar
Your Name committed
130
131
                    true,
                    false);
liucong's avatar
liucong committed
132
133
134
                    
    // 创建输入数据
    std::unordered_map<std::string, migraphx::argument> inputData;
Your Name's avatar
Your Name committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    inputData[inputName]= migraphx::argument{inputShape, (float*)inputBlob.data};

    // 推理
    std::vector<migraphx::argument> inferenceResults = net.eval(inputData);

    // 获取推理结果
    std::vector<cv::Mat> outs;
    migraphx::argument result = inferenceResults[0]; 

    // 转换为cv::Mat
    migraphx::shape outputShape = result.get_shape();
    int shape[]={outputShape.lens()[0],outputShape.lens()[1],outputShape.lens()[2]};
    cv::Mat out(3,shape,CV_32F);
    memcpy(out.data,result.data(),sizeof(float)*outputShape.elements());
    outs.push_back(out);

    //获取先验框的个数
    int numProposal = outs[0].size[1];
    int numOut = outs[0].size[2];
    //变换输出的维度
    outs[0] = outs[0].reshape(0, numProposal);

    //生成先验框
    std::vector<float> confidences;
    std::vector<cv::Rect> boxes;
    std::vector<int> classIds;
    float ratioh = (float)srcImage.rows / inputSize.height, ratiow = (float)srcImage.cols / inputSize.width;

    //计算cx,cy,w,h,box_sore,class_sore
    int n = 0, rowInd = 0;
    float* pdata = (float*)outs[0].data;
    for (n = 0; n < numProposal; n++)
    {
        float boxScores = pdata[4];
        if (boxScores > yolov3Parameter.objectThreshold)
        {
            cv::Mat scores = outs[0].row(rowInd).colRange(5, numOut);
            cv::Point classIdPoint;
            double maxClassScore;
            cv::minMaxLoc(scores, 0, &maxClassScore, 0, &classIdPoint);
            maxClassScore *= boxScores;
            if (maxClassScore > yolov3Parameter.confidenceThreshold)
            {
                const int classIdx = classIdPoint.x;
                float cx = pdata[0] * ratiow;
                float cy = pdata[1] * ratioh;
                float w = pdata[2] * ratiow;
                float h = pdata[3] * ratioh;

                int left = int(cx - 0.5 * w);
                int top = int(cy - 0.5 * h);

                confidences.push_back((float)maxClassScore);
                boxes.push_back(cv::Rect(left, top, (int)(w), (int)(h)));
                classIds.push_back(classIdx);
            }
        }
        rowInd++;
        pdata += numOut;
    }

    //执行non maximum suppression消除冗余重叠boxes
    std::vector<int> indices;
liucong's avatar
liucong committed
198
    cv::dnn::NMSBoxes(boxes, confidences, yolov3Parameter.confidenceThreshold, yolov3Parameter.nmsThreshold, indices);
Your Name's avatar
Your Name committed
199
200
201
202
    for (size_t i = 0; i < indices.size(); ++i)
    {
        int idx = indices[i];
        int classID=classIds[idx];
liucong's avatar
liucong committed
203
        std::string className=classNames[classID];
Your Name's avatar
Your Name committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        float confidence=confidences[idx];
        cv::Rect box = boxes[idx];

        ResultOfDetection result;
        result.boundingBox=box;
        result.confidence=confidence;// confidence
        result.classID=classID; // label
        result.className=className;
        resultsOfDetection.push_back(result);
    }

    return SUCCESS;
}

}