DetectorYOLOV3.cpp 7.85 KB
Newer Older
Your Name's avatar
Your Name committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#include <DetectorYOLOV3.h>
#include <migraphx/onnx.hpp>
#include <migraphx/gpu/target.hpp>
#include <migraphx/gpu/hip.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/quantization.hpp>
#include <opencv2/dnn.hpp>
#include <CommonUtility.h>
#include <Filesystem.h>
#include <SimpleLog.h>

using namespace cv::dnn;

namespace migraphxSamples
{

DetectorYOLOV3::DetectorYOLOV3():logFile(NULL)
{

}

DetectorYOLOV3::~DetectorYOLOV3()
{

    configurationFile.release();
    
}

ErrorCode DetectorYOLOV3::Initialize(InitializationParameterOfDetector initializationParameterOfDetector)
{
    // 初始化(获取日志文件,加载配置文件等)
    ErrorCode errorCode=DoCommonInitialization(initializationParameterOfDetector);
    if(errorCode!=SUCCESS)
    {
        LOG_ERROR(logFile,"fail to DoCommonInitialization\n");
        return errorCode;
    }
    LOG_INFO(logFile,"succeed to DoCommonInitialization\n");
    
    // 获取配置文件参数
    FileNode netNode = configurationFile["DetectorYOLOV3"];
    string modelPath=initializationParameter.parentPath+(string)netNode["ModelPath"];
    string pathOfClassNameFile=(string)netNode["ClassNameFile"];
    yolov3Parameter.confidenceThreshold = (float)netNode["ConfidenceThreshold"];
    yolov3Parameter.nmsThreshold = (float)netNode["NMSThreshold"];
    yolov3Parameter.objectThreshold = (float)netNode["ObjectThreshold"];
    yolov3Parameter.numberOfClasses=(int)netNode["NumberOfClasses"];
    useFP16=(bool)(int)netNode["UseFP16"];

    // 加载模型
    if(Exists(modelPath)==false)
    {
        LOG_ERROR(logFile,"%s not exist!\n",modelPath.c_str());
        return MODEL_NOT_EXIST;
    }
    net = migraphx::parse_onnx(modelPath);
    LOG_INFO(logFile,"succeed to load model: %s\n",GetFileName(modelPath).c_str());

    // 获取模型输入属性
    std::pair<std::string, migraphx::shape> inputAttribute=*(net.get_parameter_shapes().begin());
    inputName=inputAttribute.first;
    inputShape=inputAttribute.second;
    inputSize=cv::Size(inputShape.lens()[3],inputShape.lens()[2]);

    // 设置模型为GPU模式
    migraphx::target gpuTarget = migraphx::gpu::target{};

    // 量化    
    if(useFP16)
    {
        migraphx::quantize_fp16(net);
    }

    // 编译模型
    migraphx::compile_options options;
    options.device_id=0; // 设置GPU设备,默认为0号设备
    options.offload_copy=true; // 设置offload_copy
    net.compile(gpuTarget,options);
    LOG_INFO(logFile,"succeed to compile model: %s\n",GetFileName(modelPath).c_str());

    // Run once by itself
    migraphx::parameter_map inputData;
    inputData[inputName]=migraphx::generate_argument(inputShape);
    net.eval(inputData);

    // 读取类别名
    if(!pathOfClassNameFile.empty())
    {
        ifstream classNameFile(pathOfClassNameFile);
        string line;
        while (getline(classNameFile, line))
        {
            classNames.push_back(line);
        }
    }
    else
    {
        classNames.resize(yolov3Parameter.numberOfClasses);
    }

    // log
    LOG_INFO(logFile,"InputSize:%dx%d\n",inputSize.width,inputSize.height);
    LOG_INFO(logFile,"InputName:%s\n",inputName.c_str());
    LOG_INFO(logFile,"ConfidenceThreshold:%f\n",yolov3Parameter.confidenceThreshold);
    LOG_INFO(logFile,"NMSThreshold:%f\n",yolov3Parameter.nmsThreshold);
    LOG_INFO(logFile,"objectThreshold:%f\n",yolov3Parameter.objectThreshold);
    LOG_INFO(logFile,"NumberOfClasses:%d\n",yolov3Parameter.numberOfClasses);

    return SUCCESS;

}

ErrorCode DetectorYOLOV3::Detect(const cv::Mat &srcImage, std::vector<ResultOfDetection> &resultsOfDetection)
{
    if(srcImage.empty()||srcImage.type()!=CV_8UC3)
    {
        LOG_ERROR(logFile, "image error!\n");
        return IMAGE_ERROR;
    }

   // 预处理并转换为NCHW
    cv::Mat inputBlob;
    blobFromImage(srcImage,
                    inputBlob,
                    1 / 255.0,
                    inputSize,
                    Scalar(0, 0, 0),
                    true,
                    false);
    // 输入数据
    migraphx::parameter_map inputData;
    inputData[inputName]= migraphx::argument{inputShape, (float*)inputBlob.data};

    // 推理
    std::vector<migraphx::argument> inferenceResults = net.eval(inputData);

    // 获取推理结果
    std::vector<cv::Mat> outs;
    migraphx::argument result = inferenceResults[0]; 

    // 转换为cv::Mat
    migraphx::shape outputShape = result.get_shape();
    int shape[]={outputShape.lens()[0],outputShape.lens()[1],outputShape.lens()[2]};
    cv::Mat out(3,shape,CV_32F);
    memcpy(out.data,result.data(),sizeof(float)*outputShape.elements());
    outs.push_back(out);

    //获取先验框的个数
    int numProposal = outs[0].size[1];
    int numOut = outs[0].size[2];
    //变换输出的维度
    outs[0] = outs[0].reshape(0, numProposal);

    //生成先验框
    std::vector<float> confidences;
    std::vector<cv::Rect> boxes;
    std::vector<int> classIds;
    float ratioh = (float)srcImage.rows / inputSize.height, ratiow = (float)srcImage.cols / inputSize.width;

    //计算cx,cy,w,h,box_sore,class_sore
    int n = 0, rowInd = 0;
    float* pdata = (float*)outs[0].data;
    for (n = 0; n < numProposal; n++)
    {
        float boxScores = pdata[4];
        if (boxScores > yolov3Parameter.objectThreshold)
        {
            cv::Mat scores = outs[0].row(rowInd).colRange(5, numOut);
            cv::Point classIdPoint;
            double maxClassScore;
            cv::minMaxLoc(scores, 0, &maxClassScore, 0, &classIdPoint);
            maxClassScore *= boxScores;
            if (maxClassScore > yolov3Parameter.confidenceThreshold)
            {
                const int classIdx = classIdPoint.x;
                float cx = pdata[0] * ratiow;
                float cy = pdata[1] * ratioh;
                float w = pdata[2] * ratiow;
                float h = pdata[3] * ratioh;

                int left = int(cx - 0.5 * w);
                int top = int(cy - 0.5 * h);

                confidences.push_back((float)maxClassScore);
                boxes.push_back(cv::Rect(left, top, (int)(w), (int)(h)));
                classIds.push_back(classIdx);
            }
        }
        rowInd++;
        pdata += numOut;
    }

    //执行non maximum suppression消除冗余重叠boxes
    std::vector<int> indices;
    dnn::NMSBoxes(boxes, confidences, yolov3Parameter.confidenceThreshold, yolov3Parameter.nmsThreshold, indices);
    for (size_t i = 0; i < indices.size(); ++i)
    {
        int idx = indices[i];
        int classID=classIds[idx];
        string className=classNames[classID];
        float confidence=confidences[idx];
        cv::Rect box = boxes[idx];

        ResultOfDetection result;
        result.boundingBox=box;
        result.confidence=confidence;// confidence
        result.classID=classID; // label
        result.className=className;
        resultsOfDetection.push_back(result);
    }

    return SUCCESS;
}

ErrorCode DetectorYOLOV3::DoCommonInitialization(InitializationParameterOfDetector initializationParameterOfDetector)
{
    initializationParameter=initializationParameterOfDetector;

    // 获取日志文件
    logFile=LogManager::GetInstance()->GetLogFile(initializationParameter.logName);

    // 加载配置文件
    std::string configFilePath=initializationParameter.configFilePath;
    if(!Exists(configFilePath))
    {
        LOG_ERROR(logFile, "no configuration file!\n");
        return CONFIG_FILE_NOT_EXIST;
    }
    if(!configurationFile.open(configFilePath, FileStorage::READ))
    {
       LOG_ERROR(logFile, "fail to open configuration file\n");
       return FAIL_TO_OPEN_CONFIG_FILE;
    }
    LOG_INFO(logFile, "succeed to open configuration file\n");

    // 修改父路径
    std::string &parentPath = initializationParameter.parentPath;
    if (!parentPath.empty())
    {
        if(!IsPathSeparator(parentPath[parentPath.size() - 1]))
        {
           parentPath+=PATH_SEPARATOR;
        }
    }

    return SUCCESS;

}

}