Commit a53a851b authored by chenzk's avatar chenzk
Browse files

v1.0

parents
Pipeline #1184 failed with stages
in 0 seconds
---
comments: true
description: Learn how to isolate and extract specific objects from images and videos using YOLOv8 object cropping.
keywords: Ultralytics, YOLOv8, Object Detection, Object Cropping, Image Analysis, Video Processing, Data Extraction, Python
---
# Object Cropping using Ultralytics YOLOv8 🚀
## What is Object Cropping?
Object cropping with [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) involves isolating and extracting specific detected objects from an image or video. The YOLOv8 model capabilities are utilized to accurately identify and delineate objects, enabling precise cropping for further analysis or manipulation.
## Advantages of Object Cropping?
- **Focused Analysis**: YOLOv8 facilitates targeted object cropping, allowing for in-depth examination or processing of individual items within a scene.
- **Reduced Data Volume**: By extracting only relevant objects, object cropping helps in minimizing data size, making it efficient for storage, transmission, or subsequent computational tasks.
- **Enhanced Precision**: YOLOv8's object detection accuracy ensures that the cropped objects maintain their spatial relationships, preserving the integrity of the visual information for detailed analysis.
## Visuals
| Airport Luggage |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| ![Conveyor Belt at Airport Suitcases Cropping using Ultralytics YOLOv8](https://github.com/RizwanMunawar/RizwanMunawar/assets/62513924/648f46be-f233-4307-a8e5-046eea38d2e4) |
| Suitcases Cropping at airport conveyor belt using Ultralytics YOLOv8 |
!!! Example "Object Cropping using YOLOv8 Example"
=== "Object Cropping"
```python
from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors
import cv2
import os
model = YOLO("yolov8n.pt")
names = model.names
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
crop_dir_name = "ultralytics_crop"
if not os.path.exists(crop_dir_name):
os.mkdir(crop_dir_name)
# Video writer
video_writer = cv2.VideoWriter("object_cropping_output.avi",
cv2.VideoWriter_fourcc(*'mp4v'),
fps, (w, h))
idx = 0
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
results = model.predict(im0, show=False)
boxes = results[0].boxes.xyxy.cpu().tolist()
clss = results[0].boxes.cls.cpu().tolist()
annotator = Annotator(im0, line_width=2, example=names)
if boxes is not None:
for box, cls in zip(boxes, clss):
idx += 1
annotator.box_label(box, color=colors(int(cls), True), label=names[int(cls)])
crop_obj = im0[int(box[1]):int(box[3]), int(box[0]):int(box[2])]
cv2.imwrite(os.path.join(crop_dir_name, str(idx)+".png"), crop_obj)
cv2.imshow("ultralytics", im0)
video_writer.write(im0)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
video_writer.release()
cv2.destroyAllWindows()
```
### Arguments `model.predict`
| Name | Type | Default | Description |
|-----------------|----------------|------------------------|----------------------------------------------------------------------------|
| `source` | `str` | `'ultralytics/assets'` | source directory for images or videos |
| `conf` | `float` | `0.25` | object confidence threshold for detection |
| `iou` | `float` | `0.7` | intersection over union (IoU) threshold for NMS |
| `imgsz` | `int or tuple` | `640` | image size as scalar or (h, w) list, i.e. (640, 480) |
| `half` | `bool` | `False` | use half precision (FP16) |
| `device` | `None or str` | `None` | device to run on, i.e. cuda device=0/1/2/3 or device=cpu |
| `max_det` | `int` | `300` | maximum number of detections per image |
| `vid_stride` | `bool` | `False` | video frame-rate stride |
| `stream_buffer` | `bool` | `False` | buffer all streaming frames (True) or return the most recent frame (False) |
| `visualize` | `bool` | `False` | visualize model features |
| `augment` | `bool` | `False` | apply image augmentation to prediction sources |
| `agnostic_nms` | `bool` | `False` | class-agnostic NMS |
| `classes` | `list[int]` | `None` | filter results by class, i.e. classes=0, or classes=[0,2,3] |
| `retina_masks` | `bool` | `False` | use high-resolution segmentation masks |
| `embed` | `list[int]` | `None` | return feature vectors/embeddings from given layers |
---
comments: true
description: Learn how to optimize Ultralytics YOLOv8 models with Intel OpenVINO for maximum performance. Discover expert techniques to minimize latency and maximize throughput for real-time object detection applications.
keywords: Ultralytics, YOLOv8, OpenVINO, optimization, latency, throughput, inference, object detection, deep learning, machine learning, guide, Intel
---
# Optimizing OpenVINO Inference for Ultralytics YOLO Models: A Comprehensive Guide
<img width="1024" src="https://github.com/RizwanMunawar/RizwanMunawar/assets/62513924/2b181f68-aa91-4514-ba09-497cc3c83b00" alt="OpenVINO Ecosystem">
## Introduction
When deploying deep learning models, particularly those for object detection such as Ultralytics YOLO models, achieving optimal performance is crucial. This guide delves into leveraging Intel's OpenVINO toolkit to optimize inference, focusing on latency and throughput. Whether you're working on consumer-grade applications or large-scale deployments, understanding and applying these optimization strategies will ensure your models run efficiently on various devices.
## Optimizing for Latency
Latency optimization is vital for applications requiring immediate response from a single model given a single input, typical in consumer scenarios. The goal is to minimize the delay between input and inference result. However, achieving low latency involves careful consideration, especially when running concurrent inferences or managing multiple models.
### Key Strategies for Latency Optimization:
- **Single Inference per Device:** The simplest way to achieve low latency is by limiting to one inference at a time per device. Additional concurrency often leads to increased latency.
- **Leveraging Sub-Devices:** Devices like multi-socket CPUs or multi-tile GPUs can execute multiple requests with minimal latency increase by utilizing their internal sub-devices.
- **OpenVINO Performance Hints:** Utilizing OpenVINO's `ov::hint::PerformanceMode::LATENCY` for the `ov::hint::performance_mode` property during model compilation simplifies performance tuning, offering a device-agnostic and future-proof approach.
### Managing First-Inference Latency:
- **Model Caching:** To mitigate model load and compile times impacting latency, use model caching where possible. For scenarios where caching isn't viable, CPUs generally offer the fastest model load times.
- **Model Mapping vs. Reading:** To reduce load times, OpenVINO replaced model reading with mapping. However, if the model is on a removable or network drive, consider using `ov::enable_mmap(false)` to switch back to reading.
- **AUTO Device Selection:** This mode begins inference on the CPU, shifting to an accelerator once ready, seamlessly reducing first-inference latency.
## Optimizing for Throughput
Throughput optimization is crucial for scenarios serving numerous inference requests simultaneously, maximizing resource utilization without significantly sacrificing individual request performance.
### Approaches to Throughput Optimization:
1. **OpenVINO Performance Hints:** A high-level, future-proof method to enhance throughput across devices using performance hints.
```python
import openvino.properties as props
import openvino.properties.hint as hints
config = {hints.performance_mode: hints.PerformanceMode.THROUGHPUT}
compiled_model = core.compile_model(model, "GPU", config)
```
2. **Explicit Batching and Streams:** A more granular approach involving explicit batching and the use of streams for advanced performance tuning.
### Designing Throughput-Oriented Applications:
To maximize throughput, applications should:
- Process inputs in parallel, making full use of the device's capabilities.
- Decompose data flow into concurrent inference requests, scheduled for parallel execution.
- Utilize the Async API with callbacks to maintain efficiency and avoid device starvation.
### Multi-Device Execution:
OpenVINO's multi-device mode simplifies scaling throughput by automatically balancing inference requests across devices without requiring application-level device management.
## Conclusion
Optimizing Ultralytics YOLO models for latency and throughput with OpenVINO can significantly enhance your application's performance. By carefully applying the strategies outlined in this guide, developers can ensure their models run efficiently, meeting the demands of various deployment scenarios. Remember, the choice between optimizing for latency or throughput depends on your specific application needs and the characteristics of the deployment environment.
For more detailed technical information and the latest updates, refer to the [OpenVINO documentation](https://docs.openvino.ai/latest/index.html) and [Ultralytics YOLO repository](https://github.com/ultralytics/ultralytics). These resources provide in-depth guides, tutorials, and community support to help you get the most out of your deep learning models.
---
Ensuring your models achieve optimal performance is not just about tweaking configurations; it's about understanding your application's needs and making informed decisions. Whether you're optimizing for real-time responses or maximizing throughput for large-scale processing, the combination of Ultralytics YOLO models and OpenVINO offers a powerful toolkit for developers to deploy high-performance AI solutions.
---
comments: true
description: Quick start guide to setting up YOLO on a Raspberry Pi with a Pi Camera using the libcamera stack. Detailed comparison between Raspberry Pi 3, 4 and 5 models.
keywords: Ultralytics, YOLO, Raspberry Pi, Pi Camera, libcamera, quick start guide, Raspberry Pi 4 vs Raspberry Pi 5, YOLO on Raspberry Pi, hardware setup, machine learning, AI
---
# Quick Start Guide: Raspberry Pi and Pi Camera with YOLOv5 and YOLOv8
This comprehensive guide aims to expedite your journey with YOLO object detection models on a [Raspberry Pi](https://www.raspberrypi.com/) using a [Pi Camera](https://www.raspberrypi.com/products/camera-module-v2/). Whether you're a student, hobbyist, or a professional, this guide is designed to get you up and running in less than 30 minutes. The instructions here are rigorously tested to minimize setup issues, allowing you to focus on utilizing YOLO for your specific projects.
<p align="center">
<br>
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/yul4gq_LrOI"
title="Introducing Raspberry Pi 5" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> Raspberry Pi 5 updates and improvements.
</p>
## Prerequisites
- Raspberry Pi 3, 4 or 5
- Pi Camera
- 64-bit Raspberry Pi Operating System
Connect the Pi Camera to your Raspberry Pi via a CSI cable and install the 64-bit Raspberry Pi Operating System. Verify your camera with the following command:
```bash
libcamera-hello
```
You should see a video feed from your camera.
## Choose Your YOLO Version: YOLOv5 or YOLOv8
This guide offers you the flexibility to start with either [YOLOv5](https://github.com/ultralytics/yolov5) or [YOLOv8](https://github.com/ultralytics/ultralytics). Both versions have their unique advantages and use-cases. The choice is yours, but remember, the guide's aim is not just quick setup but also a robust foundation for your future work in object detection.
## Hardware Specifics: At a Glance
To assist you in making an informed hardware decision, we've summarized the key hardware specifics of Raspberry Pi 3, 4, and 5 in the table below:
| Feature | Raspberry Pi 3 | Raspberry Pi 4 | Raspberry Pi 5 |
|----------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| **CPU** | 1.2GHz Quad-Core ARM Cortex-A53 | 1.5GHz Quad-core 64-bit ARM Cortex-A72 | 2.4GHz Quad-core 64-bit Arm Cortex-A76 |
| **RAM** | 1GB LPDDR2 | 2GB, 4GB or 8GB LPDDR4 | *Details not yet available* |
| **USB Ports** | 4 x USB 2.0 | 2 x USB 2.0, 2 x USB 3.0 | 2 x USB 3.0, 2 x USB 2.0 |
| **Network** | Ethernet & Wi-Fi 802.11n | Gigabit Ethernet & Wi-Fi 802.11ac | Gigabit Ethernet with PoE+ support, Dual-band 802.11ac Wi-Fi® |
| **Performance** | Slower, may require lighter YOLO models | Faster, can run complex YOLO models | *Details not yet available* |
| **Power Requirement** | 2.5A power supply | 3.0A USB-C power supply | *Details not yet available* |
| **Official Documentation** | [Link](https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2837/README.md) | [Link](https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2711/README.md) | [Link](https://www.raspberrypi.com/news/introducing-raspberry-pi-5/) |
Please make sure to follow the instructions specific to your Raspberry Pi model to ensure a smooth setup process.
## Quick Start with YOLOv5
This section outlines how to set up YOLOv5 on a Raspberry Pi with a Pi Camera. These steps are designed to be compatible with the libcamera camera stack introduced in Raspberry Pi OS Bullseye.
### Install Necessary Packages
1. Update the Raspberry Pi:
```bash
sudo apt-get update
sudo apt-get upgrade -y
sudo apt-get autoremove -y
```
2. Clone the YOLOv5 repository:
```bash
cd ~
git clone https://github.com/Ultralytics/yolov5.git
```
3. Install the required dependencies:
```bash
cd ~/yolov5
pip3 install -r requirements.txt
```
4. For Raspberry Pi 3, install compatible versions of PyTorch and Torchvision (skip for Raspberry Pi 4):
```bash
pip3 uninstall torch torchvision
pip3 install torch==1.11.0 torchvision==0.12.0
```
### Modify `detect.py`
To enable TCP streams via SSH or the CLI, minor modifications are needed in `detect.py`.
1. Open `detect.py`:
```bash
sudo nano ~/yolov5/detect.py
```
2. Find and modify the `is_url` line to accept TCP streams:
```python
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://', 'tcp://'))
```
3. Comment out the `view_img` line:
```python
# view_img = check_imshow(warn=True)
```
4. Save and exit:
```bash
CTRL + O -> ENTER -> CTRL + X
```
### Initiate TCP Stream with Libcamera
1. Start the TCP stream:
```bash
libcamera-vid -n -t 0 --width 1280 --height 960 --framerate 1 --inline --listen -o tcp://127.0.0.1:8888
```
Keep this terminal session running for the next steps.
### Perform YOLOv5 Inference
1. Run the YOLOv5 detection:
```bash
cd ~/yolov5
python3 detect.py --source=tcp://127.0.0.1:8888
```
## Quick Start with YOLOv8
Follow this section if you are interested in setting up YOLOv8 instead. The steps are quite similar but are tailored for YOLOv8's specific needs.
### Install Necessary Packages
1. Update the Raspberry Pi:
```bash
sudo apt-get update
sudo apt-get upgrade -y
sudo apt-get autoremove -y
```
2. Install the `ultralytics` Python package:
```bash
pip3 install ultralytics
```
3. Reboot:
```bash
sudo reboot
```
### Initiate TCP Stream with Libcamera
1. Start the TCP stream:
```bash
libcamera-vid -n -t 0 --width 1280 --height 960 --framerate 1 --inline --listen -o tcp://127.0.0.1:8888
```
### Perform YOLOv8 Inference
To perform inference with YOLOv8, you can use the following Python code snippet:
```python
from ultralytics import YOLO
model = YOLO('yolov8n.pt')
results = model('tcp://127.0.0.1:8888', stream=True)
while True:
for result in results:
boxes = result.boxes
probs = result.probs
```
## Next Steps
Congratulations on successfully setting up YOLO on your Raspberry Pi! For further learning and support, visit [Ultralytics](https://ultralytics.com/) and [Kashmir World Foundation](https://www.kashmirworldfoundation.org/).
## Acknowledgements and Citations
This guide was initially created by Daan Eeltink for Kashmir World Foundation, an organization dedicated to the use of YOLO for the conservation of endangered species. We acknowledge their pioneering work and educational focus in the realm of object detection technologies.
For more information about Kashmir World Foundation's activities, you can visit their [website](https://www.kashmirworldfoundation.org/).
---
comments: true
description: Object Counting in Different Region using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, Object Detection, Object Counting, Object Tracking, Notebook, IPython Kernel, CLI, Python SDK
---
# Object Counting in Different Regions using Ultralytics YOLOv8 🚀
## What is Object Counting in Regions?
[Object counting](https://docs.ultralytics.com/guides/object-counting/) in regions with [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) involves precisely determining the number of objects within specified areas using advanced computer vision. This approach is valuable for optimizing processes, enhancing security, and improving efficiency in various applications.
<p align="center">
<br>
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/okItf1iHlV8"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> Ultralytics YOLOv8 Object Counting in Multiple & Movable Regions
</p>
## Advantages of Object Counting in Regions?
- **Precision and Accuracy:** Object counting in regions with advanced computer vision ensures precise and accurate counts, minimizing errors often associated with manual counting.
- **Efficiency Improvement:** Automated object counting enhances operational efficiency, providing real-time results and streamlining processes across different applications.
- **Versatility and Application:** The versatility of object counting in regions makes it applicable across various domains, from manufacturing and surveillance to traffic monitoring, contributing to its widespread utility and effectiveness.
## Real World Applications
| Retail | Market Streets |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| ![People Counting in Different Region using Ultralytics YOLOv8](https://github.com/RizwanMunawar/ultralytics/assets/62513924/5ab3bbd7-fd12-4849-928e-5f294d6c3fcf) | ![Crowd Counting in Different Region using Ultralytics YOLOv8](https://github.com/RizwanMunawar/ultralytics/assets/62513924/e7c1aea7-474d-4d78-8d48-b50854ffe1ca) |
| People Counting in Different Region using Ultralytics YOLOv8 | Crowd Counting in Different Region using Ultralytics YOLOv8 |
## Steps to Run
### Step 1: Install Required Libraries
Begin by cloning the Ultralytics repository, installing dependencies, and navigating to the local directory using the provided commands in Step 2.
```bash
# Clone Ultralytics repo
git clone https://github.com/ultralytics/ultralytics
# Navigate to the local directory
cd ultralytics/examples/YOLOv8-Region-Counter
```
### Step 2: Run Region Counting Using Ultralytics YOLOv8
Execute the following basic commands for inference.
???+ tip "Region is Movable"
During video playback, you can interactively move the region within the video by clicking and dragging using the left mouse button.
```bash
# Save results
python yolov8_region_counter.py --source "path/to/video.mp4" --save-img
# Run model on CPU
python yolov8_region_counter.py --source "path/to/video.mp4" --device cpu
# Change model file
python yolov8_region_counter.py --source "path/to/video.mp4" --weights "path/to/model.pt"
# Detect specific classes (e.g., first and third classes)
python yolov8_region_counter.py --source "path/to/video.mp4" --classes 0 2
# View results without saving
python yolov8_region_counter.py --source "path/to/video.mp4" --view-img
```
### Optional Arguments
| Name | Type | Default | Description |
|----------------------|--------|--------------|--------------------------------------------|
| `--source` | `str` | `None` | Path to video file, for webcam 0 |
| `--line_thickness` | `int` | `2` | Bounding Box thickness |
| `--save-img` | `bool` | `False` | Save the predicted video/image |
| `--weights` | `str` | `yolov8n.pt` | Weights file path |
| `--classes` | `list` | `None` | Detect specific classes i.e. --classes 0 2 |
| `--region-thickness` | `int` | `2` | Region Box thickness |
| `--track-thickness` | `int` | `2` | Tracking line thickness |
---
comments: true
description: A comprehensive guide on how to use YOLOv8 with SAHI for standard and sliced inference in object detection tasks.
keywords: YOLOv8, SAHI, Sliced Inference, Object Detection, Ultralytics, Large Scale Image Analysis, High-Resolution Imagery
---
# Ultralytics Docs: Using YOLOv8 with SAHI for Sliced Inference
Welcome to the Ultralytics documentation on how to use YOLOv8 with [SAHI](https://github.com/obss/sahi) (Slicing Aided Hyper Inference). This comprehensive guide aims to furnish you with all the essential knowledge you'll need to implement SAHI alongside YOLOv8. We'll deep-dive into what SAHI is, why sliced inference is critical for large-scale applications, and how to integrate these functionalities with YOLOv8 for enhanced object detection performance.
<p align="center">
<img width="1024" src="https://raw.githubusercontent.com/obss/sahi/main/resources/sliced_inference.gif" alt="SAHI Sliced Inference Overview">
</p>
## Introduction to SAHI
SAHI (Slicing Aided Hyper Inference) is an innovative library designed to optimize object detection algorithms for large-scale and high-resolution imagery. Its core functionality lies in partitioning images into manageable slices, running object detection on each slice, and then stitching the results back together. SAHI is compatible with a range of object detection models, including the YOLO series, thereby offering flexibility while ensuring optimized use of computational resources.
### Key Features of SAHI
- **Seamless Integration**: SAHI integrates effortlessly with YOLO models, meaning you can start slicing and detecting without a lot of code modification.
- **Resource Efficiency**: By breaking down large images into smaller parts, SAHI optimizes the memory usage, allowing you to run high-quality detection on hardware with limited resources.
- **High Accuracy**: SAHI maintains the detection accuracy by employing smart algorithms to merge overlapping detection boxes during the stitching process.
## What is Sliced Inference?
Sliced Inference refers to the practice of subdividing a large or high-resolution image into smaller segments (slices), conducting object detection on these slices, and then recompiling the slices to reconstruct the object locations on the original image. This technique is invaluable in scenarios where computational resources are limited or when working with extremely high-resolution images that could otherwise lead to memory issues.
### Benefits of Sliced Inference
- **Reduced Computational Burden**: Smaller image slices are faster to process, and they consume less memory, enabling smoother operation on lower-end hardware.
- **Preserved Detection Quality**: Since each slice is treated independently, there is no reduction in the quality of object detection, provided the slices are large enough to capture the objects of interest.
- **Enhanced Scalability**: The technique allows for object detection to be more easily scaled across different sizes and resolutions of images, making it ideal for a wide range of applications from satellite imagery to medical diagnostics.
<table border="0">
<tr>
<th>YOLOv8 without SAHI</th>
<th>YOLOv8 with SAHI</th>
</tr>
<tr>
<td><img src="https://user-images.githubusercontent.com/26833433/266123241-260a9740-5998-4e9a-ad04-b39b7767e731.png" alt="YOLOv8 without SAHI" width="640"></td>
<td><img src="https://user-images.githubusercontent.com/26833433/266123245-55f696ad-ec74-4e71-9155-c211d693bb69.png" alt="YOLOv8 with SAHI" width="640"></td>
</tr>
</table>
## Installation and Preparation
### Installation
To get started, install the latest versions of SAHI and Ultralytics:
```bash
pip install -U ultralytics sahi
```
### Import Modules and Download Resources
Here's how to import the necessary modules and download a YOLOv8 model and some test images:
```python
from sahi.utils.yolov8 import download_yolov8s_model
from sahi import AutoDetectionModel
from sahi.utils.cv import read_image
from sahi.utils.file import download_from_url
from sahi.predict import get_prediction, get_sliced_prediction, predict
from pathlib import Path
from IPython.display import Image
# Download YOLOv8 model
yolov8_model_path = "models/yolov8s.pt"
download_yolov8s_model(yolov8_model_path)
# Download test images
download_from_url('https://raw.githubusercontent.com/obss/sahi/main/demo/demo_data/small-vehicles1.jpeg', 'demo_data/small-vehicles1.jpeg')
download_from_url('https://raw.githubusercontent.com/obss/sahi/main/demo/demo_data/terrain2.png', 'demo_data/terrain2.png')
```
## Standard Inference with YOLOv8
### Instantiate the Model
You can instantiate a YOLOv8 model for object detection like this:
```python
detection_model = AutoDetectionModel.from_pretrained(
model_type='yolov8',
model_path=yolov8_model_path,
confidence_threshold=0.3,
device="cpu", # or 'cuda:0'
)
```
### Perform Standard Prediction
Perform standard inference using an image path or a numpy image.
```python
# With an image path
result = get_prediction("demo_data/small-vehicles1.jpeg", detection_model)
# With a numpy image
result = get_prediction(read_image("demo_data/small-vehicles1.jpeg"), detection_model)
```
### Visualize Results
Export and visualize the predicted bounding boxes and masks:
```python
result.export_visuals(export_dir="demo_data/")
Image("demo_data/prediction_visual.png")
```
## Sliced Inference with YOLOv8
Perform sliced inference by specifying the slice dimensions and overlap ratios:
```python
result = get_sliced_prediction(
"demo_data/small-vehicles1.jpeg",
detection_model,
slice_height=256,
slice_width=256,
overlap_height_ratio=0.2,
overlap_width_ratio=0.2
)
```
## Handling Prediction Results
SAHI provides a `PredictionResult` object, which can be converted into various annotation formats:
```python
# Access the object prediction list
object_prediction_list = result.object_prediction_list
# Convert to COCO annotation, COCO prediction, imantics, and fiftyone formats
result.to_coco_annotations()[:3]
result.to_coco_predictions(image_id=1)[:3]
result.to_imantics_annotations()[:3]
result.to_fiftyone_detections()[:3]
```
## Batch Prediction
For batch prediction on a directory of images:
```python
predict(
model_type="yolov8",
model_path="path/to/yolov8n.pt",
model_device="cpu", # or 'cuda:0'
model_confidence_threshold=0.4,
source="path/to/dir",
slice_height=256,
slice_width=256,
overlap_height_ratio=0.2,
overlap_width_ratio=0.2,
)
```
That's it! Now you're equipped to use YOLOv8 with SAHI for both standard and sliced inference.
## Citations and Acknowledgments
If you use SAHI in your research or development work, please cite the original SAHI paper and acknowledge the authors:
!!! Quote ""
=== "BibTeX"
```bibtex
@article{akyon2022sahi,
title={Slicing Aided Hyper Inference and Fine-tuning for Small Object Detection},
author={Akyon, Fatih Cagatay and Altinuc, Sinan Onur and Temizel, Alptekin},
journal={2022 IEEE International Conference on Image Processing (ICIP)},
doi={10.1109/ICIP46576.2022.9897990},
pages={966-970},
year={2022}
}
```
We extend our thanks to the SAHI research group for creating and maintaining this invaluable resource for the computer vision community. For more information about SAHI and its creators, visit the [SAHI GitHub repository](https://github.com/obss/sahi).
---
comments: true
description: Security Alarm System Project Using Ultralytics YOLOv8. Learn How to implement a Security Alarm System Using ultralytics YOLOv8
keywords: Object Detection, Security Alarm, Object Tracking, YOLOv8, Computer Vision Projects
---
# Security Alarm System Project Using Ultralytics YOLOv8
<img src="https://github.com/RizwanMunawar/ultralytics/assets/62513924/f4e4a613-fb25-4bd0-9ec5-78352ddb62bd" alt="Security Alarm System">
The Security Alarm System Project utilizing Ultralytics YOLOv8 integrates advanced computer vision capabilities to enhance security measures. YOLOv8, developed by Ultralytics, provides real-time object detection, allowing the system to identify and respond to potential security threats promptly. This project offers several advantages:
- **Real-time Detection:** YOLOv8's efficiency enables the Security Alarm System to detect and respond to security incidents in real-time, minimizing response time.
- **Accuracy:** YOLOv8 is known for its accuracy in object detection, reducing false positives and enhancing the reliability of the security alarm system.
- **Integration Capabilities:** The project can be seamlessly integrated with existing security infrastructure, providing an upgraded layer of intelligent surveillance.
<p align="center">
<br>
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/_1CmwUzoxY4"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> Security Alarm System Project with Ultralytics YOLOv8 Object Detection
</p>
### Code
#### Import Libraries
```python
import torch
import numpy as np
import cv2
from time import time
from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
```
#### Set up the parameters of the message
???+ tip "Note"
App Password Generation is necessary
- Navigate to [App Password Generator](https://myaccount.google.com/apppasswords), designate an app name such as "security project," and obtain a 16-digit password. Copy this password and paste it into the designated password field as instructed.
```python
password = ""
from_email = "" # must match the email used to generate the password
to_email = "" # receiver email
```
#### Server creation and authentication
```python
server = smtplib.SMTP('smtp.gmail.com: 587')
server.starttls()
server.login(from_email, password)
```
#### Email Send Function
```python
def send_email(to_email, from_email, object_detected=1):
message = MIMEMultipart()
message['From'] = from_email
message['To'] = to_email
message['Subject'] = "Security Alert"
# Add in the message body
message_body = f'ALERT - {object_detected} objects has been detected!!'
message.attach(MIMEText(message_body, 'plain'))
server.sendmail(from_email, to_email, message.as_string())
```
#### Object Detection and Alert Sender
```python
class ObjectDetection:
def __init__(self, capture_index):
# default parameters
self.capture_index = capture_index
self.email_sent = False
# model information
self.model = YOLO("yolov8n.pt")
# visual information
self.annotator = None
self.start_time = 0
self.end_time = 0
# device information
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
def predict(self, im0):
results = self.model(im0)
return results
def display_fps(self, im0):
self.end_time = time()
fps = 1 / np.round(self.end_time - self.start_time, 2)
text = f'FPS: {int(fps)}'
text_size = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 1.0, 2)[0]
gap = 10
cv2.rectangle(im0, (20 - gap, 70 - text_size[1] - gap), (20 + text_size[0] + gap, 70 + gap), (255, 255, 255), -1)
cv2.putText(im0, text, (20, 70), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), 2)
def plot_bboxes(self, results, im0):
class_ids = []
self.annotator = Annotator(im0, 3, results[0].names)
boxes = results[0].boxes.xyxy.cpu()
clss = results[0].boxes.cls.cpu().tolist()
names = results[0].names
for box, cls in zip(boxes, clss):
class_ids.append(cls)
self.annotator.box_label(box, label=names[int(cls)], color=colors(int(cls), True))
return im0, class_ids
def __call__(self):
cap = cv2.VideoCapture(self.capture_index)
assert cap.isOpened()
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
frame_count = 0
while True:
self.start_time = time()
ret, im0 = cap.read()
assert ret
results = self.predict(im0)
im0, class_ids = self.plot_bboxes(results, im0)
if len(class_ids) > 0: # Only send email If not sent before
if not self.email_sent:
send_email(to_email, from_email, len(class_ids))
self.email_sent = True
else:
self.email_sent = False
self.display_fps(im0)
cv2.imshow('YOLOv8 Detection', im0)
frame_count += 1
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
cv2.destroyAllWindows()
server.quit()
```
#### Call the Object Detection class and Run the Inference
```python
detector = ObjectDetection(capture_index=0)
detector()
```
That's it! When you execute the code, you'll receive a single notification on your email if any object is detected. The notification is sent immediately, not repeatedly. However, feel free to customize the code to suit your project requirements.
#### Email Received Sample
<img width="256" src="https://github.com/RizwanMunawar/ultralytics/assets/62513924/db79ccc6-aabd-4566-a825-b34e679c90f9" alt="Email Received Sample">
---
comments: true
description: Speed Estimation Using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, Object Detection, Speed Estimation, Object Tracking, Notebook, IPython Kernel, CLI, Python SDK
---
# Speed Estimation using Ultralytics YOLOv8 🚀
## What is Speed Estimation?
Speed estimation is the process of calculating the rate of movement of an object within a given context, often employed in computer vision applications. Using [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) you can now calculate the speed of object using [object tracking](https://docs.ultralytics.com/modes/track/) alongside distance and time data, crucial for tasks like traffic and surveillance. The accuracy of speed estimation directly influences the efficiency and reliability of various applications, making it a key component in the advancement of intelligent systems and real-time decision-making processes.
<p align="center">
<br>
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/rCggzXRRSRo"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> Speed Estimation using Ultralytics YOLOv8
</p>
## Advantages of Speed Estimation?
- **Efficient Traffic Control:** Accurate speed estimation aids in managing traffic flow, enhancing safety, and reducing congestion on roadways.
- **Precise Autonomous Navigation:** In autonomous systems like self-driving cars, reliable speed estimation ensures safe and accurate vehicle navigation.
- **Enhanced Surveillance Security:** Speed estimation in surveillance analytics helps identify unusual behaviors or potential threats, improving the effectiveness of security measures.
## Real World Applications
| Transportation | Transportation |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------:|
| ![Speed Estimation on Road using Ultralytics YOLOv8](https://github.com/RizwanMunawar/ultralytics/assets/62513924/c8a0fd4a-d394-436d-8de3-d5b754755fc7) | ![Speed Estimation on Bridge using Ultralytics YOLOv8](https://github.com/RizwanMunawar/ultralytics/assets/62513924/cee10e02-b268-4304-b73a-5b9cb42da669) |
| Speed Estimation on Road using Ultralytics YOLOv8 | Speed Estimation on Bridge using Ultralytics YOLOv8 |
!!! Example "Speed Estimation using YOLOv8 Example"
=== "Speed Estimation"
```python
from ultralytics import YOLO
from ultralytics.solutions import speed_estimation
import cv2
model = YOLO("yolov8n.pt")
names = model.model.names
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# Video writer
video_writer = cv2.VideoWriter("speed_estimation.avi",
cv2.VideoWriter_fourcc(*'mp4v'),
fps,
(w, h))
line_pts = [(0, 360), (1280, 360)]
# Init speed-estimation obj
speed_obj = speed_estimation.SpeedEstimator()
speed_obj.set_args(reg_pts=line_pts,
names=names,
view_img=True)
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
tracks = model.track(im0, persist=True, show=False)
im0 = speed_obj.estimate_speed(im0, tracks)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
```
???+ warning "Speed is Estimate"
Speed will be an estimate and may not be completely accurate. Additionally, the estimation can vary depending on GPU speed.
### Optional Arguments `set_args`
| Name | Type | Default | Description |
|--------------------|--------|----------------------------|---------------------------------------------------|
| `reg_pts` | `list` | `[(20, 400), (1260, 400)]` | Points defining the Region Area |
| `names` | `dict` | `None` | Classes names |
| `view_img` | `bool` | `False` | Display frames with counts |
| `line_thickness` | `int` | `2` | Increase bounding boxes thickness |
| `region_thickness` | `int` | `5` | Thickness for object counter region or line |
| `spdl_dist_thresh` | `int` | `10` | Euclidean Distance threshold for speed check line |
### Arguments `model.track`
| Name | Type | Default | Description |
|-----------|---------|----------------|-------------------------------------------------------------|
| `source` | `im0` | `None` | source directory for images or videos |
| `persist` | `bool` | `False` | persisting tracks between frames |
| `tracker` | `str` | `botsort.yaml` | Tracking method 'bytetrack' or 'botsort' |
| `conf` | `float` | `0.3` | Confidence Threshold |
| `iou` | `float` | `0.5` | IOU Threshold |
| `classes` | `list` | `None` | filter results by class, i.e. classes=0, or classes=[0,2,3] |
| `verbose` | `bool` | `True` | Display the object tracking results |
---
comments: true
description: A step-by-step guide on integrating Ultralytics YOLOv8 with Triton Inference Server for scalable and high-performance deep learning inference deployments.
keywords: YOLOv8, Triton Inference Server, ONNX, Deep Learning Deployment, Scalable Inference, Ultralytics, NVIDIA, Object Detection, Cloud Inference
---
# Triton Inference Server with Ultralytics YOLOv8
The [Triton Inference Server](https://developer.nvidia.com/nvidia-triton-inference-server) (formerly known as TensorRT Inference Server) is an open-source software solution developed by NVIDIA. It provides a cloud inference solution optimized for NVIDIA GPUs. Triton simplifies the deployment of AI models at scale in production. Integrating Ultralytics YOLOv8 with Triton Inference Server allows you to deploy scalable, high-performance deep learning inference workloads. This guide provides steps to set up and test the integration.
<p align="center">
<br>
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/NQDtfSi5QF4"
title="Getting Started with NVIDIA Triton Inference Server" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> Getting Started with NVIDIA Triton Inference Server.
</p>
## What is Triton Inference Server?
Triton Inference Server is designed to deploy a variety of AI models in production. It supports a wide range of deep learning and machine learning frameworks, including TensorFlow, PyTorch, ONNX Runtime, and many others. Its primary use cases are:
- Serving multiple models from a single server instance.
- Dynamic model loading and unloading without server restart.
- Ensemble inference, allowing multiple models to be used together to achieve results.
- Model versioning for A/B testing and rolling updates.
## Prerequisites
Ensure you have the following prerequisites before proceeding:
- Docker installed on your machine.
- Install `tritonclient`:
```bash
pip install tritonclient[all]
```
## Exporting YOLOv8 to ONNX Format
Before deploying the model on Triton, it must be exported to the ONNX format. ONNX (Open Neural Network Exchange) is a format that allows models to be transferred between different deep learning frameworks. Use the `export` function from the `YOLO` class:
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load an official model
# Export the model
onnx_file = model.export(format='onnx', dynamic=True)
```
## Setting Up Triton Model Repository
The Triton Model Repository is a storage location where Triton can access and load models.
1. Create the necessary directory structure:
```python
from pathlib import Path
# Define paths
triton_repo_path = Path('tmp') / 'triton_repo'
triton_model_path = triton_repo_path / 'yolo'
# Create directories
(triton_model_path / '1').mkdir(parents=True, exist_ok=True)
```
2. Move the exported ONNX model to the Triton repository:
```python
from pathlib import Path
# Move ONNX model to Triton Model path
Path(onnx_file).rename(triton_model_path / '1' / 'model.onnx')
# Create config file
(triton_model_path / 'config.pbtxt').touch()
```
## Running Triton Inference Server
Run the Triton Inference Server using Docker:
```python
import subprocess
import time
from tritonclient.http import InferenceServerClient
# Define image https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver
tag = 'nvcr.io/nvidia/tritonserver:23.09-py3' # 6.4 GB
# Pull the image
subprocess.call(f'docker pull {tag}', shell=True)
# Run the Triton server and capture the container ID
container_id = subprocess.check_output(
f'docker run -d --rm -v {triton_repo_path}:/models -p 8000:8000 {tag} tritonserver --model-repository=/models',
shell=True).decode('utf-8').strip()
# Wait for the Triton server to start
triton_client = InferenceServerClient(url='localhost:8000', verbose=False, ssl=False)
# Wait until model is ready
for _ in range(10):
with contextlib.suppress(Exception):
assert triton_client.is_model_ready(model_name)
break
time.sleep(1)
```
Then run inference using the Triton Server model:
```python
from ultralytics import YOLO
# Load the Triton Server model
model = YOLO(f'http://localhost:8000/yolo', task='detect')
# Run inference on the server
results = model('path/to/image.jpg')
```
Cleanup the container:
```python
# Kill and remove the container at the end of the test
subprocess.call(f'docker kill {container_id}', shell=True)
```
---
By following the above steps, you can deploy and run Ultralytics YOLOv8 models efficiently on Triton Inference Server, providing a scalable and high-performance solution for deep learning inference tasks. If you face any issues or have further queries, refer to the [official Triton documentation](https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/index.html) or reach out to the Ultralytics community for support.
---
comments: true
description: Learn how to view image results inside a compatible VSCode terminal.
keywords: YOLOv8, VSCode, Terminal, Remote Development, Ultralytics, SSH, Object Detection, Inference, Results, Remote Tunnel, Images, Helpful, Productivity Hack
---
# Viewing Inference Results in a Terminal
<p align="center">
<img width="800" src="https://raw.githubusercontent.com/saitoha/libsixel/data/data/sixel.gif" alt="Sixel example of image in Terminal">
</p>
Image from the [libsixel](https://saitoha.github.io/libsixel/) website.
## Motivation
When connecting to a remote machine, normally visualizing image results is not possible or requires moving data to a local device with a GUI. The VSCode integrated terminal allows for directly rendering images. This is a short demonstration on how to use this in conjunction with `ultralytics` with [prediction results](../modes/predict.md).
!!! warning
Only compatible with Linux and MacOS. Check the VSCode [repository](https://github.com/microsoft/vscode), check [Issue status](https://github.com/microsoft/vscode/issues/198622), or [documentation](https://code.visualstudio.com/docs) for updates about Windows support to view images in terminal with `sixel`.
The VSCode compatible protocols for viewing images using the integrated terminal are [`sixel`](https://en.wikipedia.org/wiki/Sixel) and [`iTerm`](https://iterm2.com/documentation-images.html). This guide will demonstrate use of the `sixel` protocol.
## Process
1. First, you must enable settings `terminal.integrated.enableImages` and `terminal.integrated.gpuAcceleration` in VSCode.
```yaml
"terminal.integrated.gpuAcceleration": "auto" # "auto" is default, can also use "on"
"terminal.integrated.enableImages": false
```
<p align="center">
<img width="800" src="https://github.com/ultralytics/ultralytics/assets/62214284/d158ab1c-893c-4397-a5de-2f9f74f81175" alt="VSCode enable terminal images setting">
</p>
1. Install the `python-sixel` library in your virtual environment. This is a [fork](https://github.com/lubosz/python-sixel?tab=readme-ov-file) of the `PySixel` library, which is no longer maintained.
```bash
pip install sixel
```
1. Import the relevant libraries
```py
import io
import cv2 as cv
from ultralytics import YOLO
from sixel import SixelWriter
```
1. Load a model and execute inference, then plot the results and store in a variable. See more about inference arguments and working with results on the [predict mode](../modes/predict.md) page.
```{ .py .annotate }
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.pt")
# Run inference on an image
results = model.predict(source="ultralytics/assets/bus.jpg")
# Plot inference results
plot = results[0].plot() #(1)!
```
1. See [plot method parameters](../modes/predict.md#plot-method-parameters) to see possible arguments to use.
1. Now, use OpenCV to convert the `numpy.ndarray` to `bytes` data. Then use `io.BytesIO` to make a "file-like" object.
```{ .py .annotate }
# Results image as bytes
im_bytes = cv.imencode(
".png", #(1)!
plot,
)[1].tobytes() #(2)!
# Image bytes as a file-like object
mem_file = io.BytesIO(im_bytes)
```
1. It's possible to use other image extensions as well.
2. Only the object at index `1` that is returned is needed.
1. Create a `SixelWriter` instance, and then use the `.draw()` method to draw the image in the terminal.
```py
# Create sixel writer object
w = SixelWriter()
# Draw the sixel image in the terminal
w.draw(mem_file)
```
## Example Inference Results
<p align="center">
<img width="800" src="https://github.com/ultralytics/ultralytics/assets/62214284/6743ab64-300d-4429-bdce-e246455f7b68" alt="View Image in Terminal">
</p>
!!! danger
Using this example with videos or animated GIF frames has **not** been tested. Attempt at your own risk.
## Full Code Example
```{ .py .annotate }
import io
import cv2 as cv
from ultralytics import YOLO
from sixel import SixelWriter
# Load a model
model = YOLO("yolov8n.pt")
# Run inference on an image
results = model.predict(source="ultralytics/assets/bus.jpg")
# Plot inference results
plot = results[0].plot() #(3)!
# Results image as bytes
im_bytes = cv.imencode(
".png", #(1)!
plot,
)[1].tobytes() #(2)!
mem_file = io.BytesIO(im_bytes)
w = SixelWriter()
w.draw(mem_file)
```
1. It's possible to use other image extensions as well.
2. Only the object at index `1` that is returned is needed.
3. See [plot method parameters](../modes/predict.md#plot-method-parameters) to see possible arguments to use.
---
!!! tip
You may need to use `clear` to "erase" the view of the image in the terminal.
---
comments: true
description: VisionEye View Object Mapping using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, Object Detection, Object Tracking, IDetection, VisionEye, Computer Vision, Notebook, IPython Kernel, CLI, Python SDK
---
# VisionEye View Object Mapping using Ultralytics YOLOv8 🚀
## What is VisionEye Object Mapping?
[Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) VisionEye offers the capability for computers to identify and pinpoint objects, simulating the observational precision of the human eye. This functionality enables computers to discern and focus on specific objects, much like the way the human eye observes details from a particular viewpoint.
## Samples
| VisionEye View | VisionEye View With Object Tracking | VisionEye View With Distance Calculation |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| ![VisionEye View Object Mapping using Ultralytics YOLOv8](https://github.com/RizwanMunawar/ultralytics/assets/62513924/7d593acc-2e37-41b0-ad0e-92b4ffae6647) | ![VisionEye View Object Mapping with Object Tracking using Ultralytics YOLOv8](https://github.com/RizwanMunawar/ultralytics/assets/62513924/fcd85952-390f-451e-8fb0-b82e943af89c) | ![VisionEye View with Distance Calculation using Ultralytics YOLOv8](https://github.com/RizwanMunawar/RizwanMunawar/assets/62513924/18c4dafe-a22e-4fa9-a7d4-2bb293562a95) |
| VisionEye View Object Mapping using Ultralytics YOLOv8 | VisionEye View Object Mapping with Object Tracking using Ultralytics YOLOv8 | VisionEye View with Distance Calculation using Ultralytics YOLOv8 |
!!! Example "VisionEye Object Mapping using YOLOv8"
=== "VisionEye Object Mapping"
```python
import cv2
from ultralytics import YOLO
from ultralytics.utils.plotting import colors, Annotator
model = YOLO("yolov8n.pt")
names = model.model.names
cap = cv2.VideoCapture("path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
out = cv2.VideoWriter('visioneye-pinpoint.avi', cv2.VideoWriter_fourcc(*'MJPG'), fps, (w, h))
center_point = (-10, h)
while True:
ret, im0 = cap.read()
if not ret:
print("Video frame is empty or video processing has been successfully completed.")
break
results = model.predict(im0)
boxes = results[0].boxes.xyxy.cpu()
clss = results[0].boxes.cls.cpu().tolist()
annotator = Annotator(im0, line_width=2)
for box, cls in zip(boxes, clss):
annotator.box_label(box, label=names[int(cls)], color=colors(int(cls)))
annotator.visioneye(box, center_point)
out.write(im0)
cv2.imshow("visioneye-pinpoint", im0)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
out.release()
cap.release()
cv2.destroyAllWindows()
```
=== "VisionEye Object Mapping with Object Tracking"
```python
import cv2
from ultralytics import YOLO
from ultralytics.utils.plotting import colors, Annotator
model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
out = cv2.VideoWriter('visioneye-pinpoint.avi', cv2.VideoWriter_fourcc(*'MJPG'), fps, (w, h))
center_point = (-10, h)
while True:
ret, im0 = cap.read()
if not ret:
print("Video frame is empty or video processing has been successfully completed.")
break
annotator = Annotator(im0, line_width=2)
results = model.track(im0, persist=True)
boxes = results[0].boxes.xyxy.cpu()
if results[0].boxes.id is not None:
track_ids = results[0].boxes.id.int().cpu().tolist()
for box, track_id in zip(boxes, track_ids):
annotator.box_label(box, label=str(track_id), color=colors(int(track_id)))
annotator.visioneye(box, center_point)
out.write(im0)
cv2.imshow("visioneye-pinpoint", im0)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
out.release()
cap.release()
cv2.destroyAllWindows()
```
=== "VisionEye with Distance Calculation"
```python
import cv2
import math
from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors
model = YOLO("yolov8s.pt")
cap = cv2.VideoCapture("Path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
out = cv2.VideoWriter('visioneye-distance-calculation.avi', cv2.VideoWriter_fourcc(*'MJPG'), fps, (w, h))
center_point = (0, h)
pixel_per_meter = 10
txt_color, txt_background, bbox_clr = ((0, 0, 0), (255, 255, 255), (255, 0, 255))
while True:
ret, im0 = cap.read()
if not ret:
print("Video frame is empty or video processing has been successfully completed.")
break
annotator = Annotator(im0, line_width=2)
results = model.track(im0, persist=True)
boxes = results[0].boxes.xyxy.cpu()
if results[0].boxes.id is not None:
track_ids = results[0].boxes.id.int().cpu().tolist()
for box, track_id in zip(boxes, track_ids):
annotator.box_label(box, label=str(track_id), color=bbox_clr)
annotator.visioneye(box, center_point)
x1, y1 = int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2) # Bounding box centroid
distance = (math.sqrt((x1 - center_point[0]) ** 2 + (y1 - center_point[1]) ** 2))/pixel_per_meter
text_size, _ = cv2.getTextSize(f"Distance: {distance:.2f} m", cv2.FONT_HERSHEY_SIMPLEX,1.2, 3)
cv2.rectangle(im0, (x1, y1 - text_size[1] - 10),(x1 + text_size[0] + 10, y1), txt_background, -1)
cv2.putText(im0, f"Distance: {distance:.2f} m",(x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 1.2,txt_color, 3)
out.write(im0)
cv2.imshow("visioneye-distance-calculation", im0)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
out.release()
cap.release()
cv2.destroyAllWindows()
```
### `visioneye` Arguments
| Name | Type | Default | Description |
|---------------|---------|------------------|--------------------------------------------------|
| `color` | `tuple` | `(235, 219, 11)` | Line and object centroid color |
| `pin_color` | `tuple` | `(255, 0, 255)` | VisionEye pinpoint color |
| `thickness` | `int` | `2` | pinpoint to object line thickness |
| `pins_radius` | `int` | `10` | Pinpoint and object centroid point circle radius |
## Note
For any inquiries, feel free to post your questions in the [Ultralytics Issue Section](https://github.com/ultralytics/ultralytics/issues/new/choose) or the discussion section mentioned below.
---
comments: true
description: Workouts Monitoring Using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, Object Detection, Pose Estimation, PushUps, PullUps, Ab workouts, Notebook, IPython Kernel, CLI, Python SDK
---
# Workouts Monitoring using Ultralytics YOLOv8 🚀
Monitoring workouts through pose estimation with [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) enhances exercise assessment by accurately tracking key body landmarks and joints in real-time. This technology provides instant feedback on exercise form, tracks workout routines, and measures performance metrics, optimizing training sessions for users and trainers alike.
## Advantages of Workouts Monitoring?
- **Optimized Performance:** Tailoring workouts based on monitoring data for better results.
- **Goal Achievement:** Track and adjust fitness goals for measurable progress.
- **Personalization:** Customized workout plans based on individual data for effectiveness.
- **Health Awareness:** Early detection of patterns indicating health issues or over-training.
- **Informed Decisions:** Data-driven decisions for adjusting routines and setting realistic goals.
## Real World Applications
| Workouts Monitoring | Workouts Monitoring |
|:----------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------------:|
| ![PushUps Counting](https://github.com/RizwanMunawar/ultralytics/assets/62513924/cf016a41-589f-420f-8a8c-2cc8174a16de) | ![PullUps Counting](https://github.com/RizwanMunawar/ultralytics/assets/62513924/cb20f316-fac2-4330-8445-dcf5ffebe329) |
| PushUps Counting | PullUps Counting |
!!! Example "Workouts Monitoring Example"
=== "Workouts Monitoring"
```python
from ultralytics import YOLO
from ultralytics.solutions import ai_gym
import cv2
model = YOLO("yolov8n-pose.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
gym_object = ai_gym.AIGym() # init AI GYM module
gym_object.set_args(line_thickness=2,
view_img=True,
pose_type="pushup",
kpts_to_check=[6, 8, 10])
frame_count = 0
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
frame_count += 1
results = model.track(im0, verbose=False) # Tracking recommended
#results = model.predict(im0) # Prediction also supported
im0 = gym_object.start_counting(im0, results, frame_count)
cv2.destroyAllWindows()
```
=== "Workouts Monitoring with Save Output"
```python
from ultralytics import YOLO
from ultralytics.solutions import ai_gym
import cv2
model = YOLO("yolov8n-pose.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
video_writer = cv2.VideoWriter("workouts.avi",
cv2.VideoWriter_fourcc(*'mp4v'),
fps,
(w, h))
gym_object = ai_gym.AIGym() # init AI GYM module
gym_object.set_args(line_thickness=2,
view_img=True,
pose_type="pushup",
kpts_to_check=[6, 8, 10])
frame_count = 0
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
frame_count += 1
results = model.track(im0, verbose=False) # Tracking recommended
#results = model.predict(im0) # Prediction also supported
im0 = gym_object.start_counting(im0, results, frame_count)
video_writer.write(im0)
cv2.destroyAllWindows()
video_writer.release()
```
???+ tip "Support"
"pushup", "pullup" and "abworkout" supported
### KeyPoints Map
![keyPoints Order Ultralytics YOLOv8 Pose](https://github.com/ultralytics/ultralytics/assets/62513924/f45d8315-b59f-47b7-b9c8-c61af1ce865b)
### Arguments `set_args`
| Name | Type | Default | Description |
|-------------------|--------|----------|----------------------------------------------------------------------------------------|
| `kpts_to_check` | `list` | `None` | List of three keypoints index, for counting specific workout, followed by keypoint Map |
| `view_img` | `bool` | `False` | Display the frame with counts |
| `line_thickness` | `int` | `2` | Increase the thickness of count value |
| `pose_type` | `str` | `pushup` | Pose that need to be monitored, `pullup` and `abworkout` also supported |
| `pose_up_angle` | `int` | `145` | Pose Up Angle value |
| `pose_down_angle` | `int` | `90` | Pose Down Angle value |
### Arguments `model.predict`
| Name | Type | Default | Description |
|-----------------|----------------|------------------------|----------------------------------------------------------------------------|
| `source` | `str` | `'ultralytics/assets'` | source directory for images or videos |
| `conf` | `float` | `0.25` | object confidence threshold for detection |
| `iou` | `float` | `0.7` | intersection over union (IoU) threshold for NMS |
| `imgsz` | `int or tuple` | `640` | image size as scalar or (h, w) list, i.e. (640, 480) |
| `half` | `bool` | `False` | use half precision (FP16) |
| `device` | `None or str` | `None` | device to run on, i.e. cuda device=0/1/2/3 or device=cpu |
| `max_det` | `int` | `300` | maximum number of detections per image |
| `vid_stride` | `bool` | `False` | video frame-rate stride |
| `stream_buffer` | `bool` | `False` | buffer all streaming frames (True) or return the most recent frame (False) |
| `visualize` | `bool` | `False` | visualize model features |
| `augment` | `bool` | `False` | apply image augmentation to prediction sources |
| `agnostic_nms` | `bool` | `False` | class-agnostic NMS |
| `classes` | `list[int]` | `None` | filter results by class, i.e. classes=0, or classes=[0,2,3] |
| `retina_masks` | `bool` | `False` | use high-resolution segmentation masks |
| `embed` | `list[int]` | `None` | return feature vectors/embeddings from given layers |
### Arguments `model.track`
| Name | Type | Default | Description |
|-----------|---------|----------------|-------------------------------------------------------------|
| `source` | `im0` | `None` | source directory for images or videos |
| `persist` | `bool` | `False` | persisting tracks between frames |
| `tracker` | `str` | `botsort.yaml` | Tracking method 'bytetrack' or 'botsort' |
| `conf` | `float` | `0.3` | Confidence Threshold |
| `iou` | `float` | `0.5` | IOU Threshold |
| `classes` | `list` | `None` | filter results by class, i.e. classes=0, or classes=[0,2,3] |
| `verbose` | `bool` | `True` | Display the object tracking results |
\ No newline at end of file
---
comments: true
description: A comprehensive guide to troubleshooting common issues encountered while working with YOLOv8 in the Ultralytics ecosystem.
keywords: Troubleshooting, Ultralytics, YOLOv8, Installation Errors, Training Data, Model Performance, Hyperparameter Tuning, Deployment
---
# Troubleshooting Common YOLO Issues
<p align="center">
<img width="800" src="https://user-images.githubusercontent.com/26833433/273067258-7c1b9aee-b4e8-43b5-befd-588d4f0bd361.png" alt="YOLO Common Issues Image">
</p>
## Introduction
This guide serves as a comprehensive aid for troubleshooting common issues encountered while working with YOLOv8 on your Ultralytics projects. Navigating through these issues can be a breeze with the right guidance, ensuring your projects remain on track without unnecessary delays.
## Common Issues
### Installation Errors
Installation errors can arise due to various reasons, such as incompatible versions, missing dependencies, or incorrect environment setups. First, check to make sure you are doing the following:
- You're using Python 3.8 or later as recommended.
- Ensure that you have the correct version of PyTorch (1.8 or later) installed.
- Consider using virtual environments to avoid conflicts.
- Follow the [official installation guide](../quickstart.md) step by step.
Additionally, here are some common installation issues users have encountered, along with their respective solutions:
- Import Errors or Dependency Issues - If you're getting errors during the import of YOLOv8, or you're having issues related to dependencies, consider the following troubleshooting steps:
- **Fresh Installation**: Sometimes, starting with a fresh installation can resolve unexpected issues. Especially with libraries like Ultralytics, where updates might introduce changes to the file tree structure or functionalities.
- **Update Regularly**: Ensure you're using the latest version of the library. Older versions might not be compatible with recent updates, leading to potential conflicts or issues.
- **Check Dependencies**: Verify that all required dependencies are correctly installed and are of the compatible versions.
- **Review Changes**: If you initially cloned or installed an older version, be aware that significant updates might affect the library's structure or functionalities. Always refer to the official documentation or changelogs to understand any major changes.
- Remember, keeping your libraries and dependencies up-to-date is crucial for a smooth and error-free experience.
- Running YOLOv8 on GPU - If you're having trouble running YOLOv8 on GPU, consider the following troubleshooting steps:
- **Verify CUDA Compatibility and Installation**: Ensure your GPU is CUDA compatible and that CUDA is correctly installed. Use the `nvidia-smi` command to check the status of your NVIDIA GPU and CUDA version.
- **Check PyTorch and CUDA Integration**: Ensure PyTorch can utilize CUDA by running `import torch; print(torch.cuda.is_available())` in a Python terminal. If it returns 'True', PyTorch is set up to use CUDA.
- **Environment Activation**: Ensure you're in the correct environment where all necessary packages are installed.
- **Update Your Packages**: Outdated packages might not be compatible with your GPU. Keep them updated.
- **Program Configuration**: Check if the program or code specifies GPU usage. In YOLOv8, this might be in the settings or configuration.
### Model Training Issues
This section will address common issues faced while training and their respective explanations and solutions.
#### Verification of Configuration Settings
**Issue**: You are unsure whether the configuration settings in the `.yaml` file are being applied correctly during model training.
**Solution**: The configuration settings in the `.yaml` file should be applied when using the `model.train()` function. To ensure that these settings are correctly applied, follow these steps:
- Confirm that the path to your `.yaml` configuration file is correct.
- Make sure you pass the path to your `.yaml` file as the `data` argument when calling `model.train()`, as shown below:
```python
model.train(data='/path/to/your/data.yaml', batch=4)
```
#### Accelerating Training with Multiple GPUs
**Issue**: Training is slow on a single GPU, and you want to speed up the process using multiple GPUs.
**Solution**: Increasing the batch size can accelerate training, but it's essential to consider GPU memory capacity. To speed up training with multiple GPUs, follow these steps:
- Ensure that you have multiple GPUs available.
- Modify your .yaml configuration file to specify the number of GPUs to use, e.g., gpus: 4.
- Increase the batch size accordingly to fully utilize the multiple GPUs without exceeding memory limits.
- Modify your training command to utilize multiple GPUs:
```python
# Adjust the batch size and other settings as needed to optimize training speed
model.train(data='/path/to/your/data.yaml', batch=32, multi_scale=True)
```
#### Continuous Monitoring Parameters
**Issue**: You want to know which parameters should be continuously monitored during training, apart from loss.
**Solution**: While loss is a crucial metric to monitor, it's also essential to track other metrics for model performance optimization. Some key metrics to monitor during training include:
- Precision
- Recall
- Mean Average Precision (mAP)
You can access these metrics from the training logs or by using tools like TensorBoard or wandb for visualization. Implementing early stopping based on these metrics can help you achieve better results.
#### Tools for Tracking Training Progress
**Issue**: You are looking for recommendations on tools to track training progress.
**Solution**: To track and visualize training progress, you can consider using the following tools:
- [TensorBoard](https://www.tensorflow.org/tensorboard): TensorBoard is a popular choice for visualizing training metrics, including loss, accuracy, and more. You can integrate it with your YOLOv8 training process.
- [Comet](https://bit.ly/yolov8-readme-comet): Comet provides an extensive toolkit for experiment tracking and comparison. It allows you to track metrics, hyperparameters, and even model weights. Integration with YOLO models is also straightforward, providing you with a complete overview of your experiment cycle.
- [Ultralytics HUB](https://hub.ultralytics.com): Ultralytics HUB offers a specialized environment for tracking YOLO models, giving you a one-stop platform to manage metrics, datasets, and even collaborate with your team. Given its tailored focus on YOLO, it offers more customized tracking options.
Each of these tools offers its own set of advantages, so you may want to consider the specific needs of your project when making a choice.
#### How to Check if Training is Happening on the GPU
**Issue**: The 'device' value in the training logs is 'null,' and you're unsure if training is happening on the GPU.
**Solution**: The 'device' value being 'null' typically means that the training process is set to automatically use an available GPU, which is the default behavior. To ensure training occurs on a specific GPU, you can manually set the 'device' value to the GPU index (e.g., '0' for the first GPU) in your .yaml configuration file:
```yaml
device: 0
```
This will explicitly assign the training process to the specified GPU. If you wish to train on the CPU, set 'device' to 'cpu'.
Keep an eye on the 'runs' folder for logs and metrics to monitor training progress effectively.
#### Key Considerations for Effective Model Training
Here are some things to keep in mind, if you are facing issues related to model training.
**Dataset Format and Labels**
- Importance: The foundation of any machine learning model lies in the quality and format of the data it is trained on.
- Recommendation: Ensure that your custom dataset and its associated labels adhere to the expected format. It's crucial to verify that annotations are accurate and of high quality. Incorrect or subpar annotations can derail the model's learning process, leading to unpredictable outcomes.
**Model Convergence**
- Importance: Achieving model convergence ensures that the model has sufficiently learned from the training data.
- Recommendation: When training a model 'from scratch', it's vital to ensure that the model reaches a satisfactory level of convergence. This might necessitate a longer training duration, with more epochs, compared to when you're fine-tuning an existing model.
**Learning Rate and Batch Size**
- Importance: These hyperparameters play a pivotal role in determining how the model updates its weights during training.
- Recommendation: Regularly evaluate if the chosen learning rate and batch size are optimal for your specific dataset. Parameters that are not in harmony with the dataset's characteristics can hinder the model's performance.
**Class Distribution**
- Importance: The distribution of classes in your dataset can influence the model's prediction tendencies.
- Recommendation: Regularly assess the distribution of classes within your dataset. If there's a class imbalance, there's a risk that the model will develop a bias towards the more prevalent class. This bias can be evident in the confusion matrix, where the model might predominantly predict the majority class.
**Cross-Check with Pretrained Weights**
- Importance: Leveraging pretrained weights can provide a solid starting point for model training, especially when data is limited.
- Recommendation: As a diagnostic step, consider training your model using the same data but initializing it with pretrained weights. If this approach yields a well-formed confusion matrix, it could suggest that the 'from scratch' model might require further training or adjustments.
### Issues Related to Model Predictions
This section will address common issues faced during model prediction.
#### Getting Bounding Box Predictions With Your YOLOv8 Custom Model
**Issue**: When running predictions with a custom YOLOv8 model, there are challenges with the format and visualization of the bounding box coordinates.
**Solution**:
- Coordinate Format: YOLOv8 provides bounding box coordinates in absolute pixel values. To convert these to relative coordinates (ranging from 0 to 1), you need to divide by the image dimensions. For example, let’s say your image size is 640x640. Then you would do the following:
```python
# Convert absolute coordinates to relative coordinates
x1 = x1 / 640 # Divide x-coordinates by image width
x2 = x2 / 640
y1 = y1 / 640 # Divide y-coordinates by image height
y2 = y2 / 640
```
- File Name: To obtain the file name of the image you're predicting on, access the image file path directly from the result object within your prediction loop.
#### Filtering Objects in YOLOv8 Predictions
**Issue**: Facing issues with how to filter and display only specific objects in the prediction results when running YOLOv8 using the Ultralytics library.
**Solution**: To detect specific classes use the classes argument to specify the classes you want to include in the output. For instance, to detect only cars (assuming 'cars' have class index 2):
```shell
yolo task=detect mode=segment model=yolov8n-seg.pt source='path/to/car.mp4' show=True classes=2
```
#### Understanding Precision Metrics in YOLOv8
**Issue**: Confusion regarding the difference between box precision, mask precision, and confusion matrix precision in YOLOv8.
**Solution**: Box precision measures the accuracy of predicted bounding boxes compared to the actual ground truth boxes using IoU (Intersection over Union) as the metric. Mask precision assesses the agreement between predicted segmentation masks and ground truth masks in pixel-wise object classification. Confusion matrix precision, on the other hand, focuses on overall classification accuracy across all classes and does not consider the geometric accuracy of predictions. It's important to note that a bounding box can be geometrically accurate (true positive) even if the class prediction is wrong, leading to differences between box precision and confusion matrix precision. These metrics evaluate distinct aspects of a model's performance, reflecting the need for different evaluation metrics in various tasks.
#### Extracting Object Dimensions in YOLOv8
**Issue**: Difficulty in retrieving the length and height of detected objects in YOLOv8, especially when multiple objects are detected in an image.
**Solution**: To retrieve the bounding box dimensions, first use the Ultralytics YOLOv8 model to predict objects in an image. Then, extract the width and height information of bounding boxes from the prediction results.
```python
from ultralytics import YOLO
# Load a pre-trained YOLOv8 model
model = YOLO('yolov8n.pt')
# Specify the source image
source = 'https://ultralytics.com/images/bus.jpg'
# Make predictions
results = model.predict(source, save=True, imgsz=320, conf=0.5)
# Extract bounding box dimensions
boxes = results[0].boxes.xywh.cpu()
for box in boxes:
x, y, w, h = box
print(f"Width of Box: {w}, Height of Box: {h}")
```
### Deployment Challenges
#### GPU Deployment Issues
**Issue:** Deploying models in a multi-GPU environment can sometimes lead to unexpected behaviors like unexpected memory usage, inconsistent results across GPUs, etc.
**Solution:** Check for default GPU initialization. Some frameworks, like PyTorch, might initialize CUDA operations on a default GPU before transitioning to the designated GPUs. To bypass unexpected default initializations, specify the GPU directly during deployment and prediction. Then, use tools to monitor GPU utilization and memory usage to identify any anomalies in real-time. Also, ensure you're using the latest version of the framework or library.
#### Model Conversion/Exporting Issues
**Issue:** During the process of converting or exporting machine learning models to different formats or platforms, users might encounter errors or unexpected behaviors.
**Solution:**
- Compatibility Check: Ensure that you are using versions of libraries and frameworks that are compatible with each other. Mismatched versions can lead to unexpected errors during conversion.
- Environment Reset: If you're using an interactive environment like Jupyter or Colab, consider restarting your environment after making significant changes or installations. A fresh start can sometimes resolve underlying issues.
- Official Documentation: Always refer to the official documentation of the tool or library you are using for conversion. It often contains specific guidelines and best practices for model exporting.
- Community Support: Check the library or framework's official repository for similar issues reported by other users. The maintainers or community might have provided solutions or workarounds in discussion threads.
- Update Regularly: Ensure that you are using the latest version of the tool or library. Developers frequently release updates that fix known bugs or improve functionality.
- Test Incrementally: Before performing a full conversion, test the process with a smaller model or dataset to identify potential issues early on.
## Community and Support
Engaging with a community of like-minded individuals can significantly enhance your experience and success in working with YOLOv8. Below are some channels and resources you may find helpful.
### Forums and Channels for Getting Help
**GitHub Issues:** The YOLOv8 repository on GitHub has an [Issues tab](https://github.com/ultralytics/ultralytics/issues) where you can ask questions, report bugs, and suggest new features. The community and maintainers are active here, and it’s a great place to get help with specific problems.
**Ultralytics Discord Server:** Ultralytics has a [Discord server](https://ultralytics.com/discord/) where you can interact with other users and the developers.
### Official Documentation and Resources
**Ultralytics YOLOv8 Docs**: The [official documentation](../index.md) provides a comprehensive overview of YOLOv8, along with guides on installation, usage, and troubleshooting.
These resources should provide a solid foundation for troubleshooting and improving your YOLOv8 projects, as well as connecting with others in the YOLOv8 community.
## Conclusion
Troubleshooting is an integral part of any development process, and being equipped with the right knowledge can significantly reduce the time and effort spent in resolving issues. This guide aimed to address the most common challenges faced by users of the YOLOv8 model within the Ultralytics ecosystem. By understanding and addressing these common issues, you can ensure smoother project progress and achieve better results with your computer vision tasks.
Remember, the Ultralytics community is a valuable resource. Engaging with fellow developers and experts can provide additional insights and solutions that might not be covered in standard documentation. Always keep learning, experimenting, and sharing your experiences to contribute to the collective knowledge of the community.
Happy troubleshooting!
---
comments: true
description: A comprehensive guide on various performance metrics related to YOLOv8, their significance, and how to interpret them.
keywords: YOLOv8, Performance metrics, Object detection, Intersection over Union (IoU), Average Precision (AP), Mean Average Precision (mAP), Precision, Recall, Validation mode, Ultralytics
---
# Performance Metrics Deep Dive
## Introduction
Performance metrics are key tools to evaluate the accuracy and efficiency of object detection models. They shed light on how effectively a model can identify and localize objects within images. Additionally, they help in understanding the model's handling of false positives and false negatives. These insights are crucial for evaluating and enhancing the model's performance. In this guide, we will explore various performance metrics associated with YOLOv8, their significance, and how to interpret them.
<p align="center">
<br>
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/q7LwPoM7tSQ"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> Ultralytics YOLOv8 Performance Metrics | MAP, F1 Score, Precision, IoU & Accuracy
</p>
## Object Detection Metrics
Let’s start by discussing some metrics that are not only important to YOLOv8 but are broadly applicable across different object detection models.
- **Intersection over Union (IoU):** IoU is a measure that quantifies the overlap between a predicted bounding box and a ground truth bounding box. It plays a fundamental role in evaluating the accuracy of object localization.
- **Average Precision (AP):** AP computes the area under the precision-recall curve, providing a single value that encapsulates the model's precision and recall performance.
- **Mean Average Precision (mAP):** mAP extends the concept of AP by calculating the average AP values across multiple object classes. This is useful in multi-class object detection scenarios to provide a comprehensive evaluation of the model's performance.
- **Precision and Recall:** Precision quantifies the proportion of true positives among all positive predictions, assessing the model's capability to avoid false positives. On the other hand, Recall calculates the proportion of true positives among all actual positives, measuring the model's ability to detect all instances of a class.
- **F1 Score:** The F1 Score is the harmonic mean of precision and recall, providing a balanced assessment of a model's performance while considering both false positives and false negatives.
## How to Calculate Metrics for YOLOv8 Model
Now, we can explore [YOLOv8's Validation mode](../modes/val.md) that can be used to compute the above discussed evaluation metrics.
Using the validation mode is simple. Once you have a trained model, you can invoke the model.val() function. This function will then process the validation dataset and return a variety of performance metrics. But what do these metrics mean? And how should you interpret them?
### Interpreting the Output
Let's break down the output of the model.val() function and understand each segment of the output.
#### Class-wise Metrics
One of the sections of the output is the class-wise breakdown of performance metrics. This granular information is useful when you are trying to understand how well the model is doing for each specific class, especially in datasets with a diverse range of object categories. For each class in the dataset the following is provided:
- **Class**: This denotes the name of the object class, such as "person", "car", or "dog".
- **Images**: This metric tells you the number of images in the validation set that contain the object class.
- **Instances**: This provides the count of how many times the class appears across all images in the validation set.
- **Box(P, R, mAP50, mAP50-95)**: This metric provides insights into the model's performance in detecting objects:
- **P (Precision)**: The accuracy of the detected objects, indicating how many detections were correct.
- **R (Recall)**: The ability of the model to identify all instances of objects in the images.
- **mAP50**: Mean average precision calculated at an intersection over union (IoU) threshold of 0.50. It's a measure of the model's accuracy considering only the "easy" detections.
- **mAP50-95**: The average of the mean average precision calculated at varying IoU thresholds, ranging from 0.50 to 0.95. It gives a comprehensive view of the model's performance across different levels of detection difficulty.
#### Speed Metrics
The speed of inference can be as critical as accuracy, especially in real-time object detection scenarios. This section breaks down the time taken for various stages of the validation process, from preprocessing to post-processing.
#### COCO Metrics Evaluation
For users validating on the COCO dataset, additional metrics are calculated using the COCO evaluation script. These metrics give insights into precision and recall at different IoU thresholds and for objects of different sizes.
#### Visual Outputs
The model.val() function, apart from producing numeric metrics, also yields visual outputs that can provide a more intuitive understanding of the model's performance. Here's a breakdown of the visual outputs you can expect:
- **F1 Score Curve (`F1_curve.png`)**: This curve represents the F1 score across various thresholds. Interpreting this curve can offer insights into the model's balance between false positives and false negatives over different thresholds.
- **Precision-Recall Curve (`PR_curve.png`)**: An integral visualization for any classification problem, this curve showcases the trade-offs between precision and recall at varied thresholds. It becomes especially significant when dealing with imbalanced classes.
- **Precision Curve (`P_curve.png`)**: A graphical representation of precision values at different thresholds. This curve helps in understanding how precision varies as the threshold changes.
- **Recall Curve (`R_curve.png`)**: Correspondingly, this graph illustrates how the recall values change across different thresholds.
- **Confusion Matrix (`confusion_matrix.png`)**: The confusion matrix provides a detailed view of the outcomes, showcasing the counts of true positives, true negatives, false positives, and false negatives for each class.
- **Normalized Confusion Matrix (`confusion_matrix_normalized.png`)**: This visualization is a normalized version of the confusion matrix. It represents the data in proportions rather than raw counts. This format makes it simpler to compare the performance across classes.
- **Validation Batch Labels (`val_batchX_labels.jpg`)**: These images depict the ground truth labels for distinct batches from the validation dataset. They provide a clear picture of what the objects are and their respective locations as per the dataset.
- **Validation Batch Predictions (`val_batchX_pred.jpg`)**: Contrasting the label images, these visuals display the predictions made by the YOLOv8 model for the respective batches. By comparing these to the label images, you can easily assess how well the model detects and classifies objects visually.
#### Results Storage
For future reference, the results are saved to a directory, typically named runs/detect/val.
## Choosing the Right Metrics
Choosing the right metrics to evaluate often depends on the specific application.
- **mAP:** Suitable for a broad assessment of model performance.
- **IoU:** Essential when precise object location is crucial.
- **Precision:** Important when minimizing false detections is a priority.
- **Recall:** Vital when it's important to detect every instance of an object.
- **F1 Score:** Useful when a balance between precision and recall is needed.
For real-time applications, speed metrics like FPS (Frames Per Second) and latency are crucial to ensure timely results.
## Interpretation of Results
It’s important to understand the metrics. Here's what some of the commonly observed lower scores might suggest:
- **Low mAP:** Indicates the model may need general refinements.
- **Low IoU:** The model might be struggling to pinpoint objects accurately. Different bounding box methods could help.
- **Low Precision:** The model may be detecting too many non-existent objects. Adjusting confidence thresholds might reduce this.
- **Low Recall:** The model could be missing real objects. Improving feature extraction or using more data might help.
- **Imbalanced F1 Score:** There's a disparity between precision and recall.
- **Class-specific AP:** Low scores here can highlight classes the model struggles with.
## Case Studies
Real-world examples can help clarify how these metrics work in practice.
### Case 1
- **Situation:** mAP and F1 Score are suboptimal, but while Recall is good, Precision isn't.
- **Interpretation & Action:** There might be too many incorrect detections. Tightening confidence thresholds could reduce these, though it might also slightly decrease recall.
### Case 2
- **Situation:** mAP and Recall are acceptable, but IoU is lacking.
- **Interpretation & Action:** The model detects objects well but might not be localizing them precisely. Refining bounding box predictions might help.
### Case 3
- **Situation:** Some classes have a much lower AP than others, even with a decent overall mAP.
- **Interpretation & Action:** These classes might be more challenging for the model. Using more data for these classes or adjusting class weights during training could be beneficial.
## Connect and Collaborate
Tapping into a community of enthusiasts and experts can amplify your journey with YOLOv8. Here are some avenues that can facilitate learning, troubleshooting, and networking.
### Engage with the Broader Community
- **GitHub Issues:** The YOLOv8 repository on GitHub has an [Issues tab](https://github.com/ultralytics/ultralytics/issues) where you can ask questions, report bugs, and suggest new features. The community and maintainers are active here, and it’s a great place to get help with specific problems.
- **Ultralytics Discord Server:** Ultralytics has a [Discord server](https://ultralytics.com/discord/) where you can interact with other users and the developers.
### Official Documentation and Resources:
- **Ultralytics YOLOv8 Docs:** The [official documentation](../index.md) provides a comprehensive overview of YOLOv8, along with guides on installation, usage, and troubleshooting.
Using these resources will not only guide you through any challenges but also keep you updated with the latest trends and best practices in the YOLOv8 community.
## Conclusion
In this guide, we've taken a close look at the essential performance metrics for YOLOv8. These metrics are key to understanding how well a model is performing and are vital for anyone aiming to fine-tune their models. They offer the necessary insights for improvements and to make sure the model works effectively in real-life situations.
Remember, the YOLOv8 and Ultralytics community is an invaluable asset. Engaging with fellow developers and experts can open doors to insights and solutions not found in standard documentation. As you journey through object detection, keep the spirit of learning alive, experiment with new strategies, and share your findings. By doing so, you contribute to the community's collective wisdom and ensure its growth.
Happy object detecting!
---
comments: true
description: This guide provides best practices for performing thread-safe inference with YOLO models, ensuring reliable and concurrent predictions in multi-threaded applications.
keywords: thread-safe, YOLO inference, multi-threading, concurrent predictions, YOLO models, Ultralytics, Python threading, safe YOLO usage, AI concurrency
---
# Thread-Safe Inference with YOLO Models
Running YOLO models in a multi-threaded environment requires careful consideration to ensure thread safety. Python's `threading` module allows you to run several threads concurrently, but when it comes to using YOLO models across these threads, there are important safety issues to be aware of. This page will guide you through creating thread-safe YOLO model inference.
## Understanding Python Threading
Python threads are a form of parallelism that allow your program to run multiple operations at once. However, Python's Global Interpreter Lock (GIL) means that only one thread can execute Python bytecode at a time.
<p align="center">
<img width="800" src="https://user-images.githubusercontent.com/26833433/281418476-7f478570-fd77-4a40-bf3d-74b4db4d668c.png" alt="Single vs Multi-Thread Examples">
</p>
While this sounds like a limitation, threads can still provide concurrency, especially for I/O-bound operations or when using operations that release the GIL, like those performed by YOLO's underlying C libraries.
## The Danger of Shared Model Instances
Instantiating a YOLO model outside your threads and sharing this instance across multiple threads can lead to race conditions, where the internal state of the model is inconsistently modified due to concurrent accesses. This is particularly problematic when the model or its components hold state that is not designed to be thread-safe.
### Non-Thread-Safe Example: Single Model Instance
When using threads in Python, it's important to recognize patterns that can lead to concurrency issues. Here is what you should avoid: sharing a single YOLO model instance across multiple threads.
```python
# Unsafe: Sharing a single model instance across threads
from ultralytics import YOLO
from threading import Thread
# Instantiate the model outside the thread
shared_model = YOLO("yolov8n.pt")
def predict(image_path):
results = shared_model.predict(image_path)
# Process results
# Starting threads that share the same model instance
Thread(target=predict, args=("image1.jpg",)).start()
Thread(target=predict, args=("image2.jpg",)).start()
```
In the example above, the `shared_model` is used by multiple threads, which can lead to unpredictable results because `predict` could be executed simultaneously by multiple threads.
### Non-Thread-Safe Example: Multiple Model Instances
Similarly, here is an unsafe pattern with multiple YOLO model instances:
```python
# Unsafe: Sharing multiple model instances across threads can still lead to issues
from ultralytics import YOLO
from threading import Thread
# Instantiate multiple models outside the thread
shared_model_1 = YOLO("yolov8n_1.pt")
shared_model_2 = YOLO("yolov8n_2.pt")
def predict(model, image_path):
results = model.predict(image_path)
# Process results
# Starting threads with individual model instances
Thread(target=predict, args=(shared_model_1, "image1.jpg")).start()
Thread(target=predict, args=(shared_model_2, "image2.jpg")).start()
```
Even though there are two separate model instances, the risk of concurrency issues still exists. If the internal implementation of `YOLO` is not thread-safe, using separate instances might not prevent race conditions, especially if these instances share any underlying resources or states that are not thread-local.
## Thread-Safe Inference
To perform thread-safe inference, you should instantiate a separate YOLO model within each thread. This ensures that each thread has its own isolated model instance, eliminating the risk of race conditions.
### Thread-Safe Example
Here's how to instantiate a YOLO model inside each thread for safe parallel inference:
```python
# Safe: Instantiating a single model inside each thread
from ultralytics import YOLO
from threading import Thread
def thread_safe_predict(image_path):
# Instantiate a new model inside the thread
local_model = YOLO("yolov8n.pt")
results = local_model.predict(image_path)
# Process results
# Starting threads that each have their own model instance
Thread(target=thread_safe_predict, args=("image1.jpg",)).start()
Thread(target=thread_safe_predict, args=("image2.jpg",)).start()
```
In this example, each thread creates its own `YOLO` instance. This prevents any thread from interfering with the model state of another, thus ensuring that each thread performs inference safely and without unexpected interactions with the other threads.
## Conclusion
When using YOLO models with Python's `threading`, always instantiate your models within the thread that will use them to ensure thread safety. This practice avoids race conditions and makes sure that your inference tasks run reliably.
For more advanced scenarios and to further optimize your multi-threaded inference performance, consider using process-based parallelism with `multiprocessing` or leveraging a task queue with dedicated worker processes.
---
comments: true
description: Learn how Ultralytics leverages Continuous Integration (CI) for maintaining high-quality code. Explore our CI tests and the status of these tests for our repositories.
keywords: continuous integration, software development, CI tests, Ultralytics repositories, high-quality code, Docker Deployment, Broken Links, CodeQL, PyPi Publishing
---
# Continuous Integration (CI)
Continuous Integration (CI) is an essential aspect of software development which involves integrating changes and testing them automatically. CI allows us to maintain high-quality code by catching issues early and often in the development process. At Ultralytics, we use various CI tests to ensure the quality and integrity of our codebase.
## CI Actions
Here's a brief description of our CI actions:
- **[CI](https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml):** This is our primary CI test that involves running unit tests, linting checks, and sometimes more comprehensive tests depending on the repository.
- **[Docker Deployment](https://github.com/ultralytics/ultralytics/actions/workflows/docker.yaml):** This test checks the deployment of the project using Docker to ensure the Dockerfile and related scripts are working correctly.
- **[Broken Links](https://github.com/ultralytics/ultralytics/actions/workflows/links.yml):** This test scans the codebase for any broken or dead links in our markdown or HTML files.
- **[CodeQL](https://github.com/ultralytics/ultralytics/actions/workflows/codeql.yaml):** CodeQL is a tool from GitHub that performs semantic analysis on our code, helping to find potential security vulnerabilities and maintain high-quality code.
- **[PyPi Publishing](https://github.com/ultralytics/ultralytics/actions/workflows/publish.yml):** This test checks if the project can be packaged and published to PyPi without any errors.
### CI Results
Below is the table showing the status of these CI tests for our main repositories:
| Repository | CI | Docker Deployment | Broken Links | CodeQL | PyPi and Docs Publishing |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [yolov3](https://github.com/ultralytics/yolov3) | [![YOLOv3 CI](https://github.com/ultralytics/yolov3/actions/workflows/ci-testing.yml/badge.svg)](https://github.com/ultralytics/yolov3/actions/workflows/ci-testing.yml) | [![Publish Docker Images](https://github.com/ultralytics/yolov3/actions/workflows/docker.yml/badge.svg)](https://github.com/ultralytics/yolov3/actions/workflows/docker.yml) | [![Check Broken links](https://github.com/ultralytics/yolov3/actions/workflows/links.yml/badge.svg)](https://github.com/ultralytics/yolov3/actions/workflows/links.yml) | [![CodeQL](https://github.com/ultralytics/yolov3/actions/workflows/codeql-analysis.yml/badge.svg)](https://github.com/ultralytics/yolov3/actions/workflows/codeql-analysis.yml) | |
| [yolov5](https://github.com/ultralytics/yolov5) | [![YOLOv5 CI](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg)](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml) | [![Publish Docker Images](https://github.com/ultralytics/yolov5/actions/workflows/docker.yml/badge.svg)](https://github.com/ultralytics/yolov5/actions/workflows/docker.yml) | [![Check Broken links](https://github.com/ultralytics/yolov5/actions/workflows/links.yml/badge.svg)](https://github.com/ultralytics/yolov5/actions/workflows/links.yml) | [![CodeQL](https://github.com/ultralytics/yolov5/actions/workflows/codeql-analysis.yml/badge.svg)](https://github.com/ultralytics/yolov5/actions/workflows/codeql-analysis.yml) | |
| [ultralytics](https://github.com/ultralytics/ultralytics) | [![ultralytics CI](https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg)](https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml) | [![Publish Docker Images](https://github.com/ultralytics/ultralytics/actions/workflows/docker.yaml/badge.svg)](https://github.com/ultralytics/ultralytics/actions/workflows/docker.yaml) | [![Check Broken links](https://github.com/ultralytics/ultralytics/actions/workflows/links.yml/badge.svg)](https://github.com/ultralytics/ultralytics/actions/workflows/links.yml) | [![CodeQL](https://github.com/ultralytics/ultralytics/actions/workflows/codeql.yaml/badge.svg)](https://github.com/ultralytics/ultralytics/actions/workflows/codeql.yaml) | [![Publish to PyPI and Deploy Docs](https://github.com/ultralytics/ultralytics/actions/workflows/publish.yml/badge.svg)](https://github.com/ultralytics/ultralytics/actions/workflows/publish.yml) |
| [hub](https://github.com/ultralytics/hub) | [![HUB CI](https://github.com/ultralytics/hub/actions/workflows/ci.yaml/badge.svg)](https://github.com/ultralytics/hub/actions/workflows/ci.yaml) | | [![Check Broken links](https://github.com/ultralytics/hub/actions/workflows/links.yml/badge.svg)](https://github.com/ultralytics/hub/actions/workflows/links.yml) | | |
| [docs](https://github.com/ultralytics/docs) | | | [![Check Broken links](https://github.com/ultralytics/docs/actions/workflows/links.yml/badge.svg)](https://github.com/ultralytics/docs/actions/workflows/links.yml)[![Check Domains](https://github.com/ultralytics/docs/actions/workflows/check_domains.yml/badge.svg)](https://github.com/ultralytics/docs/actions/workflows/check_domains.yml) | | [![pages-build-deployment](https://github.com/ultralytics/docs/actions/workflows/pages/pages-build-deployment/badge.svg)](https://github.com/ultralytics/docs/actions/workflows/pages/pages-build-deployment) |
Each badge shows the status of the last run of the corresponding CI test on the `main` branch of the respective repository. If a test fails, the badge will display a "failing" status, and if it passes, it will display a "passing" status.
If you notice a test failing, it would be a great help if you could report it through a GitHub issue in the respective repository.
Remember, a successful CI test does not mean that everything is perfect. It is always recommended to manually review the code before deployment or merging changes.
## Code Coverage
Code coverage is a metric that represents the percentage of your codebase that is executed when your tests run. It provides insight into how well your tests exercise your code and can be crucial in identifying untested parts of your application. A high code coverage percentage is often associated with a lower likelihood of bugs. However, it's essential to understand that code coverage does not guarantee the absence of defects. It merely indicates which parts of the code have been executed by the tests.
### Integration with [codecov.io](https://codecov.io/)
At Ultralytics, we have integrated our repositories with [codecov.io](https://codecov.io/), a popular online platform for measuring and visualizing code coverage. Codecov provides detailed insights, coverage comparisons between commits, and visual overlays directly on your code, indicating which lines were covered.
By integrating with Codecov, we aim to maintain and improve the quality of our code by focusing on areas that might be prone to errors or need further testing.
### Coverage Results
To quickly get a glimpse of the code coverage status of the `ultralytics` python package, we have included a badge and sunburst visual of the `ultralytics` coverage results. These images show the percentage of code covered by our tests, offering an at-a-glance metric of our testing efforts. For full details please see https://codecov.io/github/ultralytics/ultralytics.
| Repository | Code Coverage |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| [ultralytics](https://github.com/ultralytics/ultralytics) | [![codecov](https://codecov.io/gh/ultralytics/ultralytics/branch/main/graph/badge.svg?token=HHW7IIVFVY)](https://codecov.io/gh/ultralytics/ultralytics) |
In the sunburst graphic below, the innermost circle is the entire project, moving away from the center are folders then, finally, a single file. The size and color of each slice is representing the number of statements and the coverage, respectively.
<a href="https://codecov.io/github/ultralytics/ultralytics">
<img src="https://codecov.io/gh/ultralytics/ultralytics/branch/main/graphs/sunburst.svg?token=HHW7IIVFVY" alt="Ultralytics Codecov Image">
</a>
---
description: Understand terms governing contributions to Ultralytics projects including source code, bug fixes, documentation and more. Read our Contributor License Agreement.
keywords: Ultralytics, Contributor License Agreement, Open Source Software, Contributions, Copyright License, Patent License, Moral Rights
---
# Ultralytics Individual Contributor License Agreement
Thank you for your interest in contributing to open source software projects (“Projects”) made available by Ultralytics Inc. (“Ultralytics”). This Individual Contributor License Agreement (“Agreement”) sets out the terms governing any source code, object code, bug fixes, configuration changes, tools, specifications, documentation, data, materials, feedback, information or other works of authorship that you submit or have submitted, in any form and in any manner, to Ultralytics in respect of any Projects (collectively “Contributions”). If you have any questions respecting this Agreement, please contact hello@ultralytics.com.
You agree that the following terms apply to all of your past, present and future Contributions. Except for the licenses granted in this Agreement, you retain all of your right, title and interest in and to your Contributions.
**Copyright License.** You hereby grant, and agree to grant, to Ultralytics a non-exclusive, perpetual, irrevocable, worldwide, fully-paid, royalty-free, transferable copyright license to reproduce, prepare derivative works of, publicly display, publicly perform, and distribute your Contributions and such derivative works, with the right to sublicense the foregoing rights through multiple tiers of sublicensees.
**Patent License.** You hereby grant, and agree to grant, to Ultralytics a non-exclusive, perpetual, irrevocable, worldwide, fully-paid, royalty-free, transferable patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer your Contributions, where such license applies only to those patent claims licensable by you that are necessarily infringed by your Contributions alone or by combination of your Contributions with the Project to which such Contributions were submitted, with the right to sublicense the foregoing rights through multiple tiers of sublicensees.
**Moral Rights.** To the fullest extent permitted under applicable law, you hereby waive, and agree not to assert, all of your “moral rights” in or relating to your Contributions for the benefit of Ultralytics, its assigns, and their respective direct and indirect sublicensees.
**Third Party Content/Rights.** If your Contribution includes or is based on any source code, object code, bug fixes, configuration changes, tools, specifications, documentation, data, materials, feedback, information or other works of authorship that were not authored by you (“Third Party Content”) or if you are aware of any third party intellectual property or proprietary rights associated with your Contribution (“Third Party Rights”), then you agree to include with the submission of your Contribution full details respecting such Third Party Content and Third Party Rights, including, without limitation, identification of which aspects of your Contribution contain Third Party Content or are associated with Third Party Rights, the owner/author of the Third Party Content and Third Party Rights, where you obtained the Third Party Content, and any applicable third party license terms or restrictions respecting the Third Party Content and Third Party Rights. For greater certainty, the foregoing obligations respecting the identification of Third Party Content and Third Party Rights do not apply to any portion of a Project that is incorporated into your Contribution to that same Project.
**Representations.** You represent that, other than the Third Party Content and Third Party Rights identified by you in accordance with this Agreement, you are the sole author of your Contributions and are legally entitled to grant the foregoing licenses and waivers in respect of your Contributions. If your Contributions were created in the course of your employment with your past or present employer(s), you represent that such employer(s) has authorized you to make your Contributions on behalf of such employer(s) or such employer(s) has waived all of their right, title or interest in or to your Contributions.
**Disclaimer.** To the fullest extent permitted under applicable law, your Contributions are provided on an "asis" basis, without any warranties or conditions, express or implied, including, without limitation, any implied warranties or conditions of non-infringement, merchantability or fitness for a particular purpose. You are not required to provide support for your Contributions, except to the extent you desire to provide support.
**No Obligation.** You acknowledge that Ultralytics is under no obligation to use or incorporate your Contributions into any of the Projects. The decision to use or incorporate your Contributions into any of the Projects will be made at the sole discretion of Ultralytics or its authorized delegates.
**Disputes.** This Agreement shall be governed by and construed in accordance with the laws of the State of New York, United States of America, without giving effect to its principles or rules regarding conflicts of laws, other than such principles directing application of New York law. The parties hereby submit to venue in, and jurisdiction of the courts located in New York, New York for purposes relating to this Agreement. In the event that any of the provisions of this Agreement shall be held by a court or other tribunal of competent jurisdiction to be unenforceable, the remaining portions hereof shall remain in full force and effect.
**Assignment.** You agree that Ultralytics may assign this Agreement, and all of its rights, obligations and licenses hereunder.
---
comments: true
description: Find solutions to your common Ultralytics YOLO related queries. Learn about hardware requirements, fine-tuning YOLO models, conversion to ONNX/TensorFlow, and more.
keywords: Ultralytics, YOLO, FAQ, hardware requirements, ONNX, TensorFlow, real-time detection, YOLO accuracy
---
# Ultralytics YOLO Frequently Asked Questions (FAQ)
This FAQ section addresses some common questions and issues users might encounter while working with Ultralytics YOLO repositories.
## 1. What are the hardware requirements for running Ultralytics YOLO?
Ultralytics YOLO can be run on a variety of hardware configurations, including CPUs, GPUs, and even some edge devices. However, for optimal performance and faster training and inference, we recommend using a GPU with a minimum of 8GB of memory. NVIDIA GPUs with CUDA support are ideal for this purpose.
## 2. How do I fine-tune a pre-trained YOLO model on my custom dataset?
To fine-tune a pre-trained YOLO model on your custom dataset, you'll need to create a dataset configuration file (YAML) that defines the dataset's properties, such as the path to the images, the number of classes, and class names. Next, you'll need to modify the model configuration file to match the number of classes in your dataset. Finally, use the `train.py` script to start the training process with your custom dataset and the pre-trained model. You can find a detailed guide on fine-tuning YOLO in the Ultralytics documentation.
## 3. How do I convert a YOLO model to ONNX or TensorFlow format?
Ultralytics provides built-in support for converting YOLO models to ONNX format. You can use the `export.py` script to convert a saved model to ONNX format. If you need to convert the model to TensorFlow format, you can use the ONNX model as an intermediary and then use the ONNX-TensorFlow converter to convert the ONNX model to TensorFlow format.
## 4. Can I use Ultralytics YOLO for real-time object detection?
Yes, Ultralytics YOLO is designed to be efficient and fast, making it suitable for real-time object detection tasks. The actual performance will depend on your hardware configuration and the complexity of the model. Using a GPU and optimizing the model for your specific use case can help achieve real-time performance.
## 5. How can I improve the accuracy of my YOLO model?
Improving the accuracy of a YOLO model may involve several strategies, such as:
- Fine-tuning the model on more annotated data
- Data augmentation to increase the variety of training samples
- Using a larger or more complex model architecture
- Adjusting the learning rate, batch size, and other hyperparameters
- Using techniques like transfer learning or knowledge distillation
Remember that there's often a trade-off between accuracy and inference speed, so finding the right balance is crucial for your specific application.
If you have any more questions or need assistance, don't hesitate to consult the Ultralytics documentation or reach out to the community through GitHub Issues or the official discussion forum.
---
comments: true
description: Explore Ultralytics community’s Code of Conduct, ensuring a supportive, inclusive environment for contributors & members at all levels. Find our guidelines on acceptable behavior & enforcement.
keywords: Ultralytics, code of conduct, community, contribution, behavior guidelines, enforcement, open source contributions
---
# Ultralytics Contributor Covenant Code of Conduct
## Our Pledge
We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socioeconomic status, nationality, personal appearance, race, religion, or sexual identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.
## Our Standards
Examples of behavior that contributes to a positive environment for our community include:
- Demonstrating empathy and kindness toward other people
- Being respectful of differing opinions, viewpoints, and experiences
- Giving and gracefully accepting constructive feedback
- Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience
- Focusing on what is best not just for us as individuals, but for the overall community
Examples of unacceptable behavior include:
- The use of sexualized language or imagery, and sexual attention or advances of any kind
- Trolling, insulting or derogatory comments, and personal or political attacks
- Public or private harassment
- Publishing others' private information, such as a physical or email address, without their explicit permission
- Other conduct which could reasonably be considered inappropriate in a professional setting
## Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful.
Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate.
## Scope
This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at hello@ultralytics.com. All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the reporter of any incident.
## Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct:
### 1. Correction
**Community Impact**: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community.
**Consequence**: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series of actions.
**Consequence**: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban.
### 3. Temporary Ban
**Community Impact**: A serious violation of community standards, including sustained inappropriate behavior.
**Consequence**: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within the community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 2.0, available at https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
Community Impact Guidelines were inspired by [Mozilla's code of conduct enforcement ladder](https://github.com/mozilla/diversity).
For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/translations.
[homepage]: https://www.contributor-covenant.org
---
comments: true
description: Learn how to contribute to Ultralytics YOLO projects – guidelines for pull requests, reporting bugs, code conduct and CLA signing.
keywords: Ultralytics, YOLO, open-source, contribute, pull request, bug report, coding guidelines, CLA, code of conduct, GitHub
---
# Contributing to Ultralytics Open-Source YOLO Repositories
First of all, thank you for your interest in contributing to Ultralytics open-source YOLO repositories! Your contributions will help improve the project and benefit the community. This document provides guidelines and best practices to get you started.
## Table of Contents
1. [Code of Conduct](#code-of-conduct)
2. [Contributing via Pull Requests](#contributing-via-pull-requests)
- [CLA Signing](#cla-signing)
- [Google-Style Docstrings](#google-style-docstrings)
- [GitHub Actions CI Tests](#github-actions-ci-tests)
3. [Reporting Bugs](#reporting-bugs)
4. [License](#license)
5. [Conclusion](#conclusion)
## Code of Conduct
All contributors are expected to adhere to the [Code of Conduct](code_of_conduct.md) to ensure a welcoming and inclusive environment for everyone.
## Contributing via Pull Requests
We welcome contributions in the form of pull requests. To make the review process smoother, please follow these guidelines:
1. **[Fork the repository](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo)**: Fork the Ultralytics YOLO repository to your own GitHub account.
2. **[Create a branch](https://docs.github.com/en/desktop/making-changes-in-a-branch/managing-branches-in-github-desktop)**: Create a new branch in your forked repository with a descriptive name for your changes.
3. **Make your changes**: Make the changes you want to contribute. Ensure that your changes follow the coding style of the project and do not introduce new errors or warnings.
4. **[Test your changes](https://github.com/ultralytics/ultralytics/tree/main/tests)**: Test your changes locally to ensure that they work as expected and do not introduce new issues.
5. **[Commit your changes](https://docs.github.com/en/desktop/making-changes-in-a-branch/committing-and-reviewing-changes-to-your-project-in-github-desktop)**: Commit your changes with a descriptive commit message. Make sure to include any relevant issue numbers in your commit message.
6. **[Create a pull request](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request)**: Create a pull request from your forked repository to the main Ultralytics YOLO repository. In the pull request description, provide a clear explanation of your changes and how they improve the project.
### CLA Signing
Before we can accept your pull request, you need to sign a [Contributor License Agreement (CLA)](CLA.md). This is a legal document stating that you agree to the terms of contributing to the Ultralytics YOLO repositories. The CLA ensures that your contributions are properly licensed and that the project can continue to be distributed under the AGPL-3.0 license.
To sign the CLA, follow the instructions provided by the CLA bot after you submit your PR and add a comment in your PR saying:
```
I have read the CLA Document and I sign the CLA
```
### Google-Style Docstrings
When adding new functions or classes, please include a [Google-style docstring](https://google.github.io/styleguide/pyguide.html) to provide clear and concise documentation for other developers. This will help ensure that your contributions are easy to understand and maintain.
!!! Example "Example Docstrings"
=== "Google-style"
This example shows both Google-style docstrings. Note that both input and output `types` must always be enclosed by parentheses, i.e. `(bool)`.
```python
def example_function(arg1, arg2=4):
"""
Example function that demonstrates Google-style docstrings.
Args:
arg1 (int): The first argument.
arg2 (int): The second argument. Default value is 4.
Returns:
(bool): True if successful, False otherwise.
Examples:
>>> result = example_function(1, 2) # returns False
"""
if arg1 == arg2:
return True
return False
```
=== "Google-style with type hints"
This example shows both Google-style docstrings and argument and return type hints, though both are not required, one can be used without the other.
```python
def example_function(arg1: int, arg2: int = 4) -> bool:
"""
Example function that demonstrates Google-style docstrings.
Args:
arg1: The first argument.
arg2: The second argument. Default value is 4.
Returns:
True if successful, False otherwise.
Examples:
>>> result = example_function(1, 2) # returns False
"""
if arg1 == arg2:
return True
return False
```
=== "Single-line"
Smaller or simpler functions can utilize a single-line docstring. Note the docstring must use 3 double-quotes, and be a complete sentence starting with a capital letter and ending with a period.
```python
def example_small_function(arg1: int, arg2: int = 4) -> bool:
"""Example function that demonstrates a single-line docstring."""
return arg1 == arg2
```
### GitHub Actions CI Tests
Before your pull request can be merged, all GitHub Actions [Continuous Integration](CI.md) (CI) tests must pass. These tests include linting, unit tests, and other checks to ensure that your changes meet the quality standards of the project. Make sure to review the output of the GitHub Actions and fix any issues
## Reporting Bugs
We appreciate bug reports as they play a crucial role in maintaining the project's quality. When reporting bugs it is important to provide a [Minimum Reproducible Example](minimum_reproducible_example.md): a clear, concise code example that replicates the issue. This helps in quick identification and resolution of the bug.
## License
Ultralytics embraces the [GNU Affero General Public License v3.0 (AGPL-3.0)](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) for its repositories, promoting openness, transparency, and collaborative enhancement in software development. This strong copyleft license ensures that all users and developers retain the freedom to use, modify, and share the software. It fosters community collaboration, ensuring that any improvements remain accessible to all.
Users and developers are encouraged to familiarize themselves with the terms of AGPL-3.0 to contribute effectively and ethically to the Ultralytics open-source community.
## Conclusion
Thank you for your interest in contributing to [Ultralytics open-source](https://github.com/ultralytics) YOLO projects. Your participation is crucial in shaping the future of our software and fostering a community of innovation and collaboration. Whether you're improving code, reporting bugs, or suggesting features, your contributions make a significant impact.
We're eager to see your ideas in action and appreciate your commitment to advancing object detection technology. Let's continue to grow and innovate together in this exciting open-source journey. Happy coding! 🚀🌟
---
comments: false
description: Discover Ultralytics’ EHS policy principles and implementation measures. Committed to safety, environment, and continuous improvement for a sustainable future.
keywords: Ultralytics policy, EHS, environment, health and safety, compliance, prevention, continuous improvement, risk management, emergency preparedness, resource allocation, communication
---
# Ultralytics Environmental, Health and Safety (EHS) Policy
At Ultralytics, we recognize that the long-term success of our company relies not only on the products and services we offer, but also the manner in which we conduct our business. We are committed to ensuring the safety and well-being of our employees, stakeholders, and the environment, and we will continuously strive to mitigate our impact on the environment while promoting health and safety.
## Policy Principles
1. **Compliance**: We will comply with all applicable laws, regulations, and standards related to EHS, and we will strive to exceed these standards where possible.
2. **Prevention**: We will work to prevent accidents, injuries, and environmental harm by implementing risk management measures and ensuring all our operations and procedures are safe.
3. **Continuous Improvement**: We will continuously improve our EHS performance by setting measurable objectives, monitoring our performance, auditing our operations, and revising our policies and procedures as needed.
4. **Communication**: We will communicate openly about our EHS performance and will engage with stakeholders to understand and address their concerns and expectations.
5. **Education and Training**: We will educate and train our employees and contractors in appropriate EHS procedures and practices.
## Implementation Measures
1. **Responsibility and Accountability**: Every employee and contractor working at or with Ultralytics is responsible for adhering to this policy. Managers and supervisors are accountable for ensuring this policy is implemented within their areas of control.
2. **Risk Management**: We will identify, assess, and manage EHS risks associated with our operations and activities to prevent accidents, injuries, and environmental harm.
3. **Resource Allocation**: We will allocate the necessary resources to ensure the effective implementation of our EHS policy, including the necessary equipment, personnel, and training.
4. **Emergency Preparedness and Response**: We will develop, maintain, and test emergency preparedness and response plans to ensure we can respond effectively to EHS incidents.
5. **Monitoring and Review**: We will monitor and review our EHS performance regularly to identify opportunities for improvement and ensure we are meeting our objectives.
This policy reflects our commitment to minimizing our environmental footprint, ensuring the safety and well-being of our employees, and continuously improving our performance.
Please remember that the implementation of an effective EHS policy requires the involvement and commitment of everyone working at or with Ultralytics. We encourage you to take personal responsibility for your safety and the safety of others, and to take care of the environment in which we live and work.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment