Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
yolov10_pytorch
Commits
a53a851b
Commit
a53a851b
authored
Jun 11, 2024
by
chenzk
Browse files
v1.0
parents
Pipeline
#1184
failed with stages
in 0 seconds
Changes
394
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
904 additions
and
0 deletions
+904
-0
ultralytics/cfg/models/v10/yolov10n.yaml
ultralytics/cfg/models/v10/yolov10n.yaml
+40
-0
ultralytics/cfg/models/v10/yolov10s.yaml
ultralytics/cfg/models/v10/yolov10s.yaml
+39
-0
ultralytics/cfg/models/v10/yolov10x.yaml
ultralytics/cfg/models/v10/yolov10x.yaml
+40
-0
ultralytics/cfg/models/v3/yolov3-spp.yaml
ultralytics/cfg/models/v3/yolov3-spp.yaml
+46
-0
ultralytics/cfg/models/v3/yolov3-tiny.yaml
ultralytics/cfg/models/v3/yolov3-tiny.yaml
+37
-0
ultralytics/cfg/models/v3/yolov3.yaml
ultralytics/cfg/models/v3/yolov3.yaml
+46
-0
ultralytics/cfg/models/v5/yolov5-p6.yaml
ultralytics/cfg/models/v5/yolov5-p6.yaml
+59
-0
ultralytics/cfg/models/v5/yolov5.yaml
ultralytics/cfg/models/v5/yolov5.yaml
+48
-0
ultralytics/cfg/models/v6/yolov6.yaml
ultralytics/cfg/models/v6/yolov6.yaml
+53
-0
ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml
ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml
+25
-0
ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml
ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml
+25
-0
ultralytics/cfg/models/v8/yolov8-cls.yaml
ultralytics/cfg/models/v8/yolov8-cls.yaml
+29
-0
ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml
ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml
+54
-0
ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml
ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml
+56
-0
ultralytics/cfg/models/v8/yolov8-ghost.yaml
ultralytics/cfg/models/v8/yolov8-ghost.yaml
+47
-0
ultralytics/cfg/models/v8/yolov8-obb.yaml
ultralytics/cfg/models/v8/yolov8-obb.yaml
+46
-0
ultralytics/cfg/models/v8/yolov8-p2.yaml
ultralytics/cfg/models/v8/yolov8-p2.yaml
+54
-0
ultralytics/cfg/models/v8/yolov8-p6.yaml
ultralytics/cfg/models/v8/yolov8-p6.yaml
+56
-0
ultralytics/cfg/models/v8/yolov8-pose-p6.yaml
ultralytics/cfg/models/v8/yolov8-pose-p6.yaml
+57
-0
ultralytics/cfg/models/v8/yolov8-pose.yaml
ultralytics/cfg/models/v8/yolov8-pose.yaml
+47
-0
No files found.
Too many changes to show.
To preserve performance only
394 of 394+
files are displayed.
Plain diff
Email patch
ultralytics/cfg/models/v10/yolov10n.yaml
0 → 100644
View file @
a53a851b
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
# YOLOv8.0n backbone
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C2f
,
[
128
,
True
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C2f
,
[
256
,
True
]]
-
[
-1
,
1
,
SCDown
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
6
,
C2f
,
[
512
,
True
]]
-
[
-1
,
1
,
SCDown
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C2f
,
[
1024
,
True
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 9
-
[
-1
,
1
,
PSA
,
[
1024
]]
# 10
# YOLOv8.0n head
head
:
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
C2f
,
[
512
]]
# 13
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
3
,
C2f
,
[
256
]]
# 16 (P3/8-small)
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
13
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
3
,
C2f
,
[
512
]]
# 19 (P4/16-medium)
-
[
-1
,
1
,
SCDown
,
[
512
,
3
,
2
]]
-
[[
-1
,
10
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
3
,
C2fCIB
,
[
1024
,
True
,
True
]]
# 22 (P5/32-large)
-
[[
16
,
19
,
22
],
1
,
v10Detect
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/v10/yolov10s.yaml
0 → 100644
View file @
a53a851b
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
s
:
[
0.33
,
0.50
,
1024
]
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C2f
,
[
128
,
True
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C2f
,
[
256
,
True
]]
-
[
-1
,
1
,
SCDown
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
6
,
C2f
,
[
512
,
True
]]
-
[
-1
,
1
,
SCDown
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C2fCIB
,
[
1024
,
True
,
True
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 9
-
[
-1
,
1
,
PSA
,
[
1024
]]
# 10
# YOLOv8.0n head
head
:
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
C2f
,
[
512
]]
# 13
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
3
,
C2f
,
[
256
]]
# 16 (P3/8-small)
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
13
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
3
,
C2f
,
[
512
]]
# 19 (P4/16-medium)
-
[
-1
,
1
,
SCDown
,
[
512
,
3
,
2
]]
-
[[
-1
,
10
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
3
,
C2fCIB
,
[
1024
,
True
,
True
]]
# 22 (P5/32-large)
-
[[
16
,
19
,
22
],
1
,
v10Detect
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/v10/yolov10x.yaml
0 → 100644
View file @
a53a851b
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
x
:
[
1.00
,
1.25
,
512
]
# YOLOv8.0n backbone
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C2f
,
[
128
,
True
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C2f
,
[
256
,
True
]]
-
[
-1
,
1
,
SCDown
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
6
,
C2fCIB
,
[
512
,
True
]]
-
[
-1
,
1
,
SCDown
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C2fCIB
,
[
1024
,
True
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 9
-
[
-1
,
1
,
PSA
,
[
1024
]]
# 10
# YOLOv8.0n head
head
:
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
C2fCIB
,
[
512
,
True
]]
# 13
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
3
,
C2f
,
[
256
]]
# 16 (P3/8-small)
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
13
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
3
,
C2fCIB
,
[
512
,
True
]]
# 19 (P4/16-medium)
-
[
-1
,
1
,
SCDown
,
[
512
,
3
,
2
]]
-
[[
-1
,
10
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
3
,
C2fCIB
,
[
1024
,
True
]]
# 22 (P5/32-large)
-
[[
16
,
19
,
22
],
1
,
v10Detect
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/v3/yolov3-spp.yaml
0 → 100644
View file @
a53a851b
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv3-SPP object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3
# Parameters
nc
:
80
# number of classes
depth_multiple
:
1.0
# model depth multiple
width_multiple
:
1.0
# layer channel multiple
# darknet53 backbone
backbone
:
# [from, number, module, args]
-
[
-1
,
1
,
Conv
,
[
32
,
3
,
1
]]
# 0
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 1-P1/2
-
[
-1
,
1
,
Bottleneck
,
[
64
]]
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 3-P2/4
-
[
-1
,
2
,
Bottleneck
,
[
128
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 5-P3/8
-
[
-1
,
8
,
Bottleneck
,
[
256
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
# 7-P4/16
-
[
-1
,
8
,
Bottleneck
,
[
512
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
2
]]
# 9-P5/32
-
[
-1
,
4
,
Bottleneck
,
[
1024
]]
# 10
# YOLOv3-SPP head
head
:
-
[
-1
,
1
,
Bottleneck
,
[
1024
,
False
]]
-
[
-1
,
1
,
SPP
,
[
512
,
[
5
,
9
,
13
]]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
1
]]
-
[
-1
,
1
,
Conv
,
[
512
,
1
,
1
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
1
]]
# 15 (P5/32-large)
-
[
-2
,
1
,
Conv
,
[
256
,
1
,
1
]]
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
8
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
1
,
Bottleneck
,
[
512
,
False
]]
-
[
-1
,
1
,
Bottleneck
,
[
512
,
False
]]
-
[
-1
,
1
,
Conv
,
[
256
,
1
,
1
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
1
]]
# 22 (P4/16-medium)
-
[
-2
,
1
,
Conv
,
[
128
,
1
,
1
]]
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
1
,
Bottleneck
,
[
256
,
False
]]
-
[
-1
,
2
,
Bottleneck
,
[
256
,
False
]]
# 27 (P3/8-small)
-
[[
27
,
22
,
15
],
1
,
Detect
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/v3/yolov3-tiny.yaml
0 → 100644
View file @
a53a851b
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv3-tiny object detection model with P4-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3
# Parameters
nc
:
80
# number of classes
depth_multiple
:
1.0
# model depth multiple
width_multiple
:
1.0
# layer channel multiple
# YOLOv3-tiny backbone
backbone
:
# [from, number, module, args]
-
[
-1
,
1
,
Conv
,
[
16
,
3
,
1
]]
# 0
-
[
-1
,
1
,
nn.MaxPool2d
,
[
2
,
2
,
0
]]
# 1-P1/2
-
[
-1
,
1
,
Conv
,
[
32
,
3
,
1
]]
-
[
-1
,
1
,
nn.MaxPool2d
,
[
2
,
2
,
0
]]
# 3-P2/4
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
1
]]
-
[
-1
,
1
,
nn.MaxPool2d
,
[
2
,
2
,
0
]]
# 5-P3/8
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
1
]]
-
[
-1
,
1
,
nn.MaxPool2d
,
[
2
,
2
,
0
]]
# 7-P4/16
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
1
]]
-
[
-1
,
1
,
nn.MaxPool2d
,
[
2
,
2
,
0
]]
# 9-P5/32
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
1
]]
-
[
-1
,
1
,
nn.ZeroPad2d
,
[[
0
,
1
,
0
,
1
]]]
# 11
-
[
-1
,
1
,
nn.MaxPool2d
,
[
2
,
1
,
0
]]
# 12
# YOLOv3-tiny head
head
:
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
1
]]
-
[
-1
,
1
,
Conv
,
[
256
,
1
,
1
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
1
]]
# 15 (P5/32-large)
-
[
-2
,
1
,
Conv
,
[
128
,
1
,
1
]]
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
8
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
1
]]
# 19 (P4/16-medium)
-
[[
19
,
15
],
1
,
Detect
,
[
nc
]]
# Detect(P4, P5)
ultralytics/cfg/models/v3/yolov3.yaml
0 → 100644
View file @
a53a851b
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv3 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3
# Parameters
nc
:
80
# number of classes
depth_multiple
:
1.0
# model depth multiple
width_multiple
:
1.0
# layer channel multiple
# darknet53 backbone
backbone
:
# [from, number, module, args]
-
[
-1
,
1
,
Conv
,
[
32
,
3
,
1
]]
# 0
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 1-P1/2
-
[
-1
,
1
,
Bottleneck
,
[
64
]]
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 3-P2/4
-
[
-1
,
2
,
Bottleneck
,
[
128
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 5-P3/8
-
[
-1
,
8
,
Bottleneck
,
[
256
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
# 7-P4/16
-
[
-1
,
8
,
Bottleneck
,
[
512
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
2
]]
# 9-P5/32
-
[
-1
,
4
,
Bottleneck
,
[
1024
]]
# 10
# YOLOv3 head
head
:
-
[
-1
,
1
,
Bottleneck
,
[
1024
,
False
]]
-
[
-1
,
1
,
Conv
,
[
512
,
1
,
1
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
1
]]
-
[
-1
,
1
,
Conv
,
[
512
,
1
,
1
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
1
]]
# 15 (P5/32-large)
-
[
-2
,
1
,
Conv
,
[
256
,
1
,
1
]]
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
8
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
1
,
Bottleneck
,
[
512
,
False
]]
-
[
-1
,
1
,
Bottleneck
,
[
512
,
False
]]
-
[
-1
,
1
,
Conv
,
[
256
,
1
,
1
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
1
]]
# 22 (P4/16-medium)
-
[
-2
,
1
,
Conv
,
[
128
,
1
,
1
]]
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
1
,
Bottleneck
,
[
256
,
False
]]
-
[
-1
,
2
,
Bottleneck
,
[
256
,
False
]]
# 27 (P3/8-small)
-
[[
27
,
22
,
15
],
1
,
Detect
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/v5/yolov5-p6.yaml
0 → 100644
View file @
a53a851b
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv5 object detection model with P3-P6 outputs. For details see https://docs.ultralytics.com/models/yolov5
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov5n-p6.yaml' will call yolov5-p6.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
s
:
[
0.33
,
0.50
,
1024
]
m
:
[
0.67
,
0.75
,
1024
]
l
:
[
1.00
,
1.00
,
1024
]
x
:
[
1.33
,
1.25
,
1024
]
# YOLOv5 v6.0 backbone
backbone
:
# [from, number, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
6
,
2
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C3
,
[
128
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C3
,
[
256
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
9
,
C3
,
[
512
]]
-
[
-1
,
1
,
Conv
,
[
768
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C3
,
[
768
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
2
]]
# 9-P6/64
-
[
-1
,
3
,
C3
,
[
1024
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 11
# YOLOv5 v6.0 head
head
:
-
[
-1
,
1
,
Conv
,
[
768
,
1
,
1
]]
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
8
],
1
,
Concat
,
[
1
]]
# cat backbone P5
-
[
-1
,
3
,
C3
,
[
768
,
False
]]
# 15
-
[
-1
,
1
,
Conv
,
[
512
,
1
,
1
]]
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
C3
,
[
512
,
False
]]
# 19
-
[
-1
,
1
,
Conv
,
[
256
,
1
,
1
]]
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
3
,
C3
,
[
256
,
False
]]
# 23 (P3/8-small)
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
20
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
3
,
C3
,
[
512
,
False
]]
# 26 (P4/16-medium)
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
-
[[
-1
,
16
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
3
,
C3
,
[
768
,
False
]]
# 29 (P5/32-large)
-
[
-1
,
1
,
Conv
,
[
768
,
3
,
2
]]
-
[[
-1
,
12
],
1
,
Concat
,
[
1
]]
# cat head P6
-
[
-1
,
3
,
C3
,
[
1024
,
False
]]
# 32 (P6/64-xlarge)
-
[[
23
,
26
,
29
,
32
],
1
,
Detect
,
[
nc
]]
# Detect(P3, P4, P5, P6)
ultralytics/cfg/models/v5/yolov5.yaml
0 → 100644
View file @
a53a851b
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
s
:
[
0.33
,
0.50
,
1024
]
m
:
[
0.67
,
0.75
,
1024
]
l
:
[
1.00
,
1.00
,
1024
]
x
:
[
1.33
,
1.25
,
1024
]
# YOLOv5 v6.0 backbone
backbone
:
# [from, number, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
6
,
2
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C3
,
[
128
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C3
,
[
256
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
9
,
C3
,
[
512
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C3
,
[
1024
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 9
# YOLOv5 v6.0 head
head
:
-
[
-1
,
1
,
Conv
,
[
512
,
1
,
1
]]
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
C3
,
[
512
,
False
]]
# 13
-
[
-1
,
1
,
Conv
,
[
256
,
1
,
1
]]
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
3
,
C3
,
[
256
,
False
]]
# 17 (P3/8-small)
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
14
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
3
,
C3
,
[
512
,
False
]]
# 20 (P4/16-medium)
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
-
[[
-1
,
10
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
3
,
C3
,
[
1024
,
False
]]
# 23 (P5/32-large)
-
[[
17
,
20
,
23
],
1
,
Detect
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/v6/yolov6.yaml
0 → 100644
View file @
a53a851b
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv6 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/models/yolov6
# Parameters
nc
:
80
# number of classes
activation
:
nn.ReLU()
# (optional) model default activation function
scales
:
# model compound scaling constants, i.e. 'model=yolov6n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
s
:
[
0.33
,
0.50
,
1024
]
m
:
[
0.67
,
0.75
,
768
]
l
:
[
1.00
,
1.00
,
512
]
x
:
[
1.00
,
1.25
,
512
]
# YOLOv6-3.0s backbone
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
6
,
Conv
,
[
128
,
3
,
1
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
12
,
Conv
,
[
256
,
3
,
1
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
18
,
Conv
,
[
512
,
3
,
1
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
6
,
Conv
,
[
1024
,
3
,
1
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 9
# YOLOv6-3.0s head
head
:
-
[
-1
,
1
,
Conv
,
[
256
,
1
,
1
]]
-
[
-1
,
1
,
nn.ConvTranspose2d
,
[
256
,
2
,
2
,
0
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
1
]]
-
[
-1
,
9
,
Conv
,
[
256
,
3
,
1
]]
# 14
-
[
-1
,
1
,
Conv
,
[
128
,
1
,
1
]]
-
[
-1
,
1
,
nn.ConvTranspose2d
,
[
128
,
2
,
2
,
0
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
1
]]
-
[
-1
,
9
,
Conv
,
[
128
,
3
,
1
]]
# 19
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
-
[[
-1
,
15
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
1
]]
-
[
-1
,
9
,
Conv
,
[
256
,
3
,
1
]]
# 23
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
10
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
1
]]
-
[
-1
,
9
,
Conv
,
[
512
,
3
,
1
]]
# 27
-
[[
19
,
23
,
27
],
1
,
Detect
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml
0 → 100644
View file @
a53a851b
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
# Parameters
nc
:
1000
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
s
:
[
0.33
,
0.50
,
1024
]
m
:
[
0.67
,
0.75
,
1024
]
l
:
[
1.00
,
1.00
,
1024
]
x
:
[
1.00
,
1.25
,
1024
]
# YOLOv8.0n backbone
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
ResNetLayer
,
[
3
,
64
,
1
,
True
,
1
]]
# 0-P1/2
-
[
-1
,
1
,
ResNetLayer
,
[
64
,
64
,
1
,
False
,
3
]]
# 1-P2/4
-
[
-1
,
1
,
ResNetLayer
,
[
256
,
128
,
2
,
False
,
4
]]
# 2-P3/8
-
[
-1
,
1
,
ResNetLayer
,
[
512
,
256
,
2
,
False
,
23
]]
# 3-P4/16
-
[
-1
,
1
,
ResNetLayer
,
[
1024
,
512
,
2
,
False
,
3
]]
# 4-P5/32
# YOLOv8.0n head
head
:
-
[
-1
,
1
,
Classify
,
[
nc
]]
# Classify
ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml
0 → 100644
View file @
a53a851b
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
# Parameters
nc
:
1000
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
s
:
[
0.33
,
0.50
,
1024
]
m
:
[
0.67
,
0.75
,
1024
]
l
:
[
1.00
,
1.00
,
1024
]
x
:
[
1.00
,
1.25
,
1024
]
# YOLOv8.0n backbone
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
ResNetLayer
,
[
3
,
64
,
1
,
True
,
1
]]
# 0-P1/2
-
[
-1
,
1
,
ResNetLayer
,
[
64
,
64
,
1
,
False
,
3
]]
# 1-P2/4
-
[
-1
,
1
,
ResNetLayer
,
[
256
,
128
,
2
,
False
,
4
]]
# 2-P3/8
-
[
-1
,
1
,
ResNetLayer
,
[
512
,
256
,
2
,
False
,
6
]]
# 3-P4/16
-
[
-1
,
1
,
ResNetLayer
,
[
1024
,
512
,
2
,
False
,
3
]]
# 4-P5/32
# YOLOv8.0n head
head
:
-
[
-1
,
1
,
Classify
,
[
nc
]]
# Classify
ultralytics/cfg/models/v8/yolov8-cls.yaml
0 → 100644
View file @
a53a851b
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
# Parameters
nc
:
1000
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
s
:
[
0.33
,
0.50
,
1024
]
m
:
[
0.67
,
0.75
,
1024
]
l
:
[
1.00
,
1.00
,
1024
]
x
:
[
1.00
,
1.25
,
1024
]
# YOLOv8.0n backbone
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C2f
,
[
128
,
True
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C2f
,
[
256
,
True
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
6
,
C2f
,
[
512
,
True
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C2f
,
[
1024
,
True
]]
# YOLOv8.0n head
head
:
-
[
-1
,
1
,
Classify
,
[
nc
]]
# Classify
ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml
0 → 100644
View file @
a53a851b
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P2-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
# YOLOv8n-ghost-p2 summary: 491 layers, 2033944 parameters, 2033928 gradients, 13.8 GFLOPs
s
:
[
0.33
,
0.50
,
1024
]
# YOLOv8s-ghost-p2 summary: 491 layers, 5562080 parameters, 5562064 gradients, 25.1 GFLOPs
m
:
[
0.67
,
0.75
,
768
]
# YOLOv8m-ghost-p2 summary: 731 layers, 9031728 parameters, 9031712 gradients, 42.8 GFLOPs
l
:
[
1.00
,
1.00
,
512
]
# YOLOv8l-ghost-p2 summary: 971 layers, 12214448 parameters, 12214432 gradients, 69.1 GFLOPs
x
:
[
1.00
,
1.25
,
512
]
# YOLOv8x-ghost-p2 summary: 971 layers, 18664776 parameters, 18664760 gradients, 103.3 GFLOPs
# YOLOv8.0-ghost backbone
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
GhostConv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C3Ghost
,
[
128
,
True
]]
-
[
-1
,
1
,
GhostConv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C3Ghost
,
[
256
,
True
]]
-
[
-1
,
1
,
GhostConv
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
6
,
C3Ghost
,
[
512
,
True
]]
-
[
-1
,
1
,
GhostConv
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C3Ghost
,
[
1024
,
True
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 9
# YOLOv8.0-ghost-p2 head
head
:
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
C3Ghost
,
[
512
]]
# 12
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
3
,
C3Ghost
,
[
256
]]
# 15 (P3/8-small)
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
2
],
1
,
Concat
,
[
1
]]
# cat backbone P2
-
[
-1
,
3
,
C3Ghost
,
[
128
]]
# 18 (P2/4-xsmall)
-
[
-1
,
1
,
GhostConv
,
[
128
,
3
,
2
]]
-
[[
-1
,
15
],
1
,
Concat
,
[
1
]]
# cat head P3
-
[
-1
,
3
,
C3Ghost
,
[
256
]]
# 21 (P3/8-small)
-
[
-1
,
1
,
GhostConv
,
[
256
,
3
,
2
]]
-
[[
-1
,
12
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
3
,
C3Ghost
,
[
512
]]
# 24 (P4/16-medium)
-
[
-1
,
1
,
GhostConv
,
[
512
,
3
,
2
]]
-
[[
-1
,
9
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
3
,
C3Ghost
,
[
1024
]]
# 27 (P5/32-large)
-
[[
18
,
21
,
24
,
27
],
1
,
Detect
,
[
nc
]]
# Detect(P2, P3, P4, P5)
ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml
0 → 100644
View file @
a53a851b
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P6 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
# YOLOv8n-ghost-p6 summary: 529 layers, 2901100 parameters, 2901084 gradients, 5.8 GFLOPs
s
:
[
0.33
,
0.50
,
1024
]
# YOLOv8s-ghost-p6 summary: 529 layers, 9520008 parameters, 9519992 gradients, 16.4 GFLOPs
m
:
[
0.67
,
0.75
,
768
]
# YOLOv8m-ghost-p6 summary: 789 layers, 18002904 parameters, 18002888 gradients, 34.4 GFLOPs
l
:
[
1.00
,
1.00
,
512
]
# YOLOv8l-ghost-p6 summary: 1049 layers, 21227584 parameters, 21227568 gradients, 55.3 GFLOPs
x
:
[
1.00
,
1.25
,
512
]
# YOLOv8x-ghost-p6 summary: 1049 layers, 33057852 parameters, 33057836 gradients, 85.7 GFLOPs
# YOLOv8.0-ghost backbone
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
GhostConv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C3Ghost
,
[
128
,
True
]]
-
[
-1
,
1
,
GhostConv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C3Ghost
,
[
256
,
True
]]
-
[
-1
,
1
,
GhostConv
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
6
,
C3Ghost
,
[
512
,
True
]]
-
[
-1
,
1
,
GhostConv
,
[
768
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C3Ghost
,
[
768
,
True
]]
-
[
-1
,
1
,
GhostConv
,
[
1024
,
3
,
2
]]
# 9-P6/64
-
[
-1
,
3
,
C3Ghost
,
[
1024
,
True
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 11
# YOLOv8.0-ghost-p6 head
head
:
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
8
],
1
,
Concat
,
[
1
]]
# cat backbone P5
-
[
-1
,
3
,
C3Ghost
,
[
768
]]
# 14
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
C3Ghost
,
[
512
]]
# 17
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
3
,
C3Ghost
,
[
256
]]
# 20 (P3/8-small)
-
[
-1
,
1
,
GhostConv
,
[
256
,
3
,
2
]]
-
[[
-1
,
17
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
3
,
C3Ghost
,
[
512
]]
# 23 (P4/16-medium)
-
[
-1
,
1
,
GhostConv
,
[
512
,
3
,
2
]]
-
[[
-1
,
14
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
3
,
C3Ghost
,
[
768
]]
# 26 (P5/32-large)
-
[
-1
,
1
,
GhostConv
,
[
768
,
3
,
2
]]
-
[[
-1
,
11
],
1
,
Concat
,
[
1
]]
# cat head P6
-
[
-1
,
3
,
C3Ghost
,
[
1024
]]
# 29 (P6/64-xlarge)
-
[[
20
,
23
,
26
,
29
],
1
,
Detect
,
[
nc
]]
# Detect(P3, P4, P5, P6)
ultralytics/cfg/models/v8/yolov8-ghost.yaml
0 → 100644
View file @
a53a851b
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
# YOLOv8n-ghost summary: 403 layers, 1865316 parameters, 1865300 gradients, 5.8 GFLOPs
s
:
[
0.33
,
0.50
,
1024
]
# YOLOv8s-ghost summary: 403 layers, 5960072 parameters, 5960056 gradients, 16.4 GFLOPs
m
:
[
0.67
,
0.75
,
768
]
# YOLOv8m-ghost summary: 603 layers, 10336312 parameters, 10336296 gradients, 32.7 GFLOPs
l
:
[
1.00
,
1.00
,
512
]
# YOLOv8l-ghost summary: 803 layers, 14277872 parameters, 14277856 gradients, 53.7 GFLOPs
x
:
[
1.00
,
1.25
,
512
]
# YOLOv8x-ghost summary: 803 layers, 22229308 parameters, 22229292 gradients, 83.3 GFLOPs
# YOLOv8.0n-ghost backbone
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
GhostConv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C3Ghost
,
[
128
,
True
]]
-
[
-1
,
1
,
GhostConv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C3Ghost
,
[
256
,
True
]]
-
[
-1
,
1
,
GhostConv
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
6
,
C3Ghost
,
[
512
,
True
]]
-
[
-1
,
1
,
GhostConv
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C3Ghost
,
[
1024
,
True
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 9
# YOLOv8.0n head
head
:
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
C3Ghost
,
[
512
]]
# 12
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
3
,
C3Ghost
,
[
256
]]
# 15 (P3/8-small)
-
[
-1
,
1
,
GhostConv
,
[
256
,
3
,
2
]]
-
[[
-1
,
12
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
3
,
C3Ghost
,
[
512
]]
# 18 (P4/16-medium)
-
[
-1
,
1
,
GhostConv
,
[
512
,
3
,
2
]]
-
[[
-1
,
9
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
3
,
C3Ghost
,
[
1024
]]
# 21 (P5/32-large)
-
[[
15
,
18
,
21
],
1
,
Detect
,
[
nc
]]
# Detect(P3, P4, P5)
ultralytics/cfg/models/v8/yolov8-obb.yaml
0 → 100644
View file @
a53a851b
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 Oriented Bounding Boxes (OBB) model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
# YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s
:
[
0.33
,
0.50
,
1024
]
# YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m
:
[
0.67
,
0.75
,
768
]
# YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l
:
[
1.00
,
1.00
,
512
]
# YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x
:
[
1.00
,
1.25
,
512
]
# YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C2f
,
[
128
,
True
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C2f
,
[
256
,
True
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
6
,
C2f
,
[
512
,
True
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C2f
,
[
1024
,
True
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 9
# YOLOv8.0n head
head
:
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
C2f
,
[
512
]]
# 12
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
3
,
C2f
,
[
256
]]
# 15 (P3/8-small)
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
12
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
3
,
C2f
,
[
512
]]
# 18 (P4/16-medium)
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
-
[[
-1
,
9
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
3
,
C2f
,
[
1024
]]
# 21 (P5/32-large)
-
[[
15
,
18
,
21
],
1
,
OBB
,
[
nc
,
1
]]
# OBB(P3, P4, P5)
ultralytics/cfg/models/v8/yolov8-p2.yaml
0 → 100644
View file @
a53a851b
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P2-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
s
:
[
0.33
,
0.50
,
1024
]
m
:
[
0.67
,
0.75
,
768
]
l
:
[
1.00
,
1.00
,
512
]
x
:
[
1.00
,
1.25
,
512
]
# YOLOv8.0 backbone
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C2f
,
[
128
,
True
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C2f
,
[
256
,
True
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
6
,
C2f
,
[
512
,
True
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C2f
,
[
1024
,
True
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 9
# YOLOv8.0-p2 head
head
:
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
C2f
,
[
512
]]
# 12
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
3
,
C2f
,
[
256
]]
# 15 (P3/8-small)
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
2
],
1
,
Concat
,
[
1
]]
# cat backbone P2
-
[
-1
,
3
,
C2f
,
[
128
]]
# 18 (P2/4-xsmall)
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
-
[[
-1
,
15
],
1
,
Concat
,
[
1
]]
# cat head P3
-
[
-1
,
3
,
C2f
,
[
256
]]
# 21 (P3/8-small)
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
12
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
3
,
C2f
,
[
512
]]
# 24 (P4/16-medium)
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
-
[[
-1
,
9
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
3
,
C2f
,
[
1024
]]
# 27 (P5/32-large)
-
[[
18
,
21
,
24
,
27
],
1
,
Detect
,
[
nc
]]
# Detect(P2, P3, P4, P5)
ultralytics/cfg/models/v8/yolov8-p6.yaml
0 → 100644
View file @
a53a851b
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P6 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc
:
80
# number of classes
scales
:
# model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
s
:
[
0.33
,
0.50
,
1024
]
m
:
[
0.67
,
0.75
,
768
]
l
:
[
1.00
,
1.00
,
512
]
x
:
[
1.00
,
1.25
,
512
]
# YOLOv8.0x6 backbone
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C2f
,
[
128
,
True
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C2f
,
[
256
,
True
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
6
,
C2f
,
[
512
,
True
]]
-
[
-1
,
1
,
Conv
,
[
768
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C2f
,
[
768
,
True
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
2
]]
# 9-P6/64
-
[
-1
,
3
,
C2f
,
[
1024
,
True
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 11
# YOLOv8.0x6 head
head
:
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
8
],
1
,
Concat
,
[
1
]]
# cat backbone P5
-
[
-1
,
3
,
C2
,
[
768
,
False
]]
# 14
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
C2
,
[
512
,
False
]]
# 17
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
3
,
C2
,
[
256
,
False
]]
# 20 (P3/8-small)
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
17
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
3
,
C2
,
[
512
,
False
]]
# 23 (P4/16-medium)
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
-
[[
-1
,
14
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
3
,
C2
,
[
768
,
False
]]
# 26 (P5/32-large)
-
[
-1
,
1
,
Conv
,
[
768
,
3
,
2
]]
-
[[
-1
,
11
],
1
,
Concat
,
[
1
]]
# cat head P6
-
[
-1
,
3
,
C2
,
[
1024
,
False
]]
# 29 (P6/64-xlarge)
-
[[
20
,
23
,
26
,
29
],
1
,
Detect
,
[
nc
]]
# Detect(P3, P4, P5, P6)
ultralytics/cfg/models/v8/yolov8-pose-p6.yaml
0 → 100644
View file @
a53a851b
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-pose-p6 keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose
# Parameters
nc
:
1
# number of classes
kpt_shape
:
[
17
,
3
]
# number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
scales
:
# model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
s
:
[
0.33
,
0.50
,
1024
]
m
:
[
0.67
,
0.75
,
768
]
l
:
[
1.00
,
1.00
,
512
]
x
:
[
1.00
,
1.25
,
512
]
# YOLOv8.0x6 backbone
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C2f
,
[
128
,
True
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C2f
,
[
256
,
True
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
6
,
C2f
,
[
512
,
True
]]
-
[
-1
,
1
,
Conv
,
[
768
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C2f
,
[
768
,
True
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
2
]]
# 9-P6/64
-
[
-1
,
3
,
C2f
,
[
1024
,
True
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 11
# YOLOv8.0x6 head
head
:
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
8
],
1
,
Concat
,
[
1
]]
# cat backbone P5
-
[
-1
,
3
,
C2
,
[
768
,
False
]]
# 14
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
C2
,
[
512
,
False
]]
# 17
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
3
,
C2
,
[
256
,
False
]]
# 20 (P3/8-small)
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
17
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
3
,
C2
,
[
512
,
False
]]
# 23 (P4/16-medium)
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
-
[[
-1
,
14
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
3
,
C2
,
[
768
,
False
]]
# 26 (P5/32-large)
-
[
-1
,
1
,
Conv
,
[
768
,
3
,
2
]]
-
[[
-1
,
11
],
1
,
Concat
,
[
1
]]
# cat head P6
-
[
-1
,
3
,
C2
,
[
1024
,
False
]]
# 29 (P6/64-xlarge)
-
[[
20
,
23
,
26
,
29
],
1
,
Pose
,
[
nc
,
kpt_shape
]]
# Pose(P3, P4, P5, P6)
ultralytics/cfg/models/v8/yolov8-pose.yaml
0 → 100644
View file @
a53a851b
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-pose keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose
# Parameters
nc
:
1
# number of classes
kpt_shape
:
[
17
,
3
]
# number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
scales
:
# model compound scaling constants, i.e. 'model=yolov8n-pose.yaml' will call yolov8-pose.yaml with scale 'n'
# [depth, width, max_channels]
n
:
[
0.33
,
0.25
,
1024
]
s
:
[
0.33
,
0.50
,
1024
]
m
:
[
0.67
,
0.75
,
768
]
l
:
[
1.00
,
1.00
,
512
]
x
:
[
1.00
,
1.25
,
512
]
# YOLOv8.0n backbone
backbone
:
# [from, repeats, module, args]
-
[
-1
,
1
,
Conv
,
[
64
,
3
,
2
]]
# 0-P1/2
-
[
-1
,
1
,
Conv
,
[
128
,
3
,
2
]]
# 1-P2/4
-
[
-1
,
3
,
C2f
,
[
128
,
True
]]
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
# 3-P3/8
-
[
-1
,
6
,
C2f
,
[
256
,
True
]]
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
# 5-P4/16
-
[
-1
,
6
,
C2f
,
[
512
,
True
]]
-
[
-1
,
1
,
Conv
,
[
1024
,
3
,
2
]]
# 7-P5/32
-
[
-1
,
3
,
C2f
,
[
1024
,
True
]]
-
[
-1
,
1
,
SPPF
,
[
1024
,
5
]]
# 9
# YOLOv8.0n head
head
:
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
6
],
1
,
Concat
,
[
1
]]
# cat backbone P4
-
[
-1
,
3
,
C2f
,
[
512
]]
# 12
-
[
-1
,
1
,
nn.Upsample
,
[
None
,
2
,
"
nearest"
]]
-
[[
-1
,
4
],
1
,
Concat
,
[
1
]]
# cat backbone P3
-
[
-1
,
3
,
C2f
,
[
256
]]
# 15 (P3/8-small)
-
[
-1
,
1
,
Conv
,
[
256
,
3
,
2
]]
-
[[
-1
,
12
],
1
,
Concat
,
[
1
]]
# cat head P4
-
[
-1
,
3
,
C2f
,
[
512
]]
# 18 (P4/16-medium)
-
[
-1
,
1
,
Conv
,
[
512
,
3
,
2
]]
-
[[
-1
,
9
],
1
,
Concat
,
[
1
]]
# cat head P5
-
[
-1
,
3
,
C2f
,
[
1024
]]
# 21 (P5/32-large)
-
[[
15
,
18
,
21
],
1
,
Pose
,
[
nc
,
kpt_shape
]]
# Pose(P3, P4, P5)
Prev
1
…
14
15
16
17
18
19
20
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment