generate_sam_masks.py 6.82 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
from multiprocessing import Pool
# if using Apple MPS, fall back to CPU for unsupported ops
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"

import warnings
warnings.filterwarnings("ignore")

import json
import cv2
import numpy as np
import torch
from PIL import Image
from pathlib import Path
from tqdm import tqdm
from pycocotools.coco import COCO

from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor

def parse_args():
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("--img-path", type=str, required=True, help="Path to the image folder")
    parser.add_argument("--json-path", type=str, required=True, help="Path to the annotation file")
    parser.add_argument("--gpus", type=str, default="0,1,2,3,4,5,6,7", help="Devices")
    parser.add_argument("--batch", action="store_true", default=False)
    return parser.parse_args()


def mask_to_coco(annotation: dict, mask: np.ndarray) -> dict:
    box_area = annotation['area']
    mask_area = np.sum(mask)
    
    if box_area < 10 or mask_area / box_area < 0.05:
        # delete the annotation with small mask or box
        return {}
    
    if mask_area < 64 * 64:
        kernel_size = (3, 3)  # use smaller kernel for small mask
    else:
        kernel_size = (7, 7)  # use larger kernel for large mask

    blurred = cv2.GaussianBlur(mask * 255, kernel_size, 0)
    _, binary = cv2.threshold(blurred, 127, 255, cv2.THRESH_BINARY)

    segmentation = []
    simplified_contours = []
    contours, _ = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    for contour in contours:
        # hierarchical simplification (smaller, simpler)
        area = cv2.contourArea(contour)
        r = 0.01 if area < 32 * 32 else 0.005 if area < 64 * 64 else 0.003 if area < 96 * 96 else 0.002 if area < 128 * 128 else 0.001
        epsilon = r * cv2.arcLength(contour, True)
        approx = cv2.approxPolyDP(contour, epsilon, True)
        # adjust epsilon if less than 3 points
        while contour.size >= 6 and len(approx) < 3:
            r *= 0.5  # decrease ratio
            epsilon = r * cv2.arcLength(contour, True)
            approx = cv2.approxPolyDP(contour, epsilon, True)
        simplified_contours.append(approx)
        approx_area = cv2.contourArea(approx)
        if approx.size >= 6 and approx_area / mask_area >= 0.05:
            segmentation.append(approx.astype(float).flatten().tolist())

    if len(segmentation) == 0:
        # delete empty mask annotations after simplification
        return {}

    annotation['segmentation'] = segmentation
    return annotation


def generate_mask_annos(model: SAM2ImagePredictor, rank, total, image_path: Path, annotation_path: Path, batch: bool):

    # mask annotation path
    mask_stem = annotation_path.stem + f'_segm_{rank}'
    annotation_mask_path = annotation_path.with_stem(mask_stem)
    print("Generate segmentation annotation file: ", annotation_mask_path)
    
    data_api = COCO(annotation_path)
    with open(annotation_path, 'r') as f:
        data = json.load(f)
    data['annotations'] = [] # reset annotations
    del_anno_ids = [] # deleted annotation ids
    
    image_ids = sorted(data_api.getImgIds())
    image_ids = np.array_split(image_ids, total)[rank].tolist()
    
    pbar = tqdm(image_ids, desc='Images Segmentation')
    for image_id in pbar:
        pbar.set_postfix({'id': image_id})
        anno_ids = data_api.getAnnIds(image_id)

        if len(anno_ids) == 0:
            pbar.update(1)
            continue

        image_info = data_api.loadImgs(image_id)[0]
        image_pil = Image.open(image_path / image_info['file_name']).convert('RGB')
        image = np.array(image_pil)
        instances = data_api.loadAnns(anno_ids)
        boxes = []
        for instance in instances:
            x1, y1, w, h = instance['bbox']
            boxes.append([x1, y1, x1 + w, y1 + h])
            
        # split by chunks, avoiding OOM
        input_boxes = np.array(boxes)
        if batch:
            chunk_size = 40
            chunks = [input_boxes[i:i + chunk_size] for i in range(0, len(input_boxes), chunk_size)]
        else:
            chunks = [input_boxes]

        try:
            model.set_image(image)
            mask_list = []
            for chunk in chunks:
                mask, _, _ = model.predict(
                    point_coords=None,
                    point_labels=None,
                    box=chunk,
                    multimask_output=False,
                )
                if len(mask.shape) == 3:
                    mask = mask[None]
                mask_list.append(mask)
            masks = np.concatenate(mask_list, axis=0)
        except Exception as e:
            print("Error:", image_id, len(anno_ids))
            pbar.update(1)
            continue
        
        for anno, mask in zip(instances, masks):
            mask = mask.squeeze()
            mask = (mask > 0.5).astype(np.uint8)
            # save mask to coco format
            segm_anno = mask_to_coco(anno, mask)
            if segm_anno:
                data['annotations'].append(segm_anno)
            else:
                del_anno_ids.append(anno['id'])

        pbar.update(1)

    print(f"Filtered {len(del_anno_ids)} annotations,{len(del_anno_ids) / len(data_api.getAnnIds()) * 100:.2f}%")
    with open(annotation_mask_path, 'w') as f:
        json.dump(data, f)
    
def worker(args):
    device, rank, total, image_path, annotation_path, batch = args
    sam2_checkpoint = "sam2/checkpoints/sam2.1_hiera_large.pt"
    model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
    
    os.environ["CUDA_VISIBLE_DEVICES"] = device
    sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
    predictor = SAM2ImagePredictor(sam2_model)
    generate_mask_annos(predictor, rank, total, image_path, annotation_path, batch)

def main(args):
    # model config
    devices = [f"{idx}" for idx in args.gpus.split(",")]
    ranks = [int(idx) for idx in args.gpus.split(",")]
    total = len(ranks)
    
    image_path = Path(args.img_path)
    annotation_path = Path(args.json_path)
    
    with Pool(len(devices)) as pool:
        _ = pool.map(worker, zip(devices, ranks, [total] * total, [image_path] * total, [annotation_path] * total, [args.batch] * total))

    annotations = []
    for rank in ranks:
        mask_path = annotation_path.with_stem(annotation_path.stem + f'_segm_{rank}')
        with open(mask_path, 'r') as f:
            annotations.extend(json.load(f)["annotations"])
        os.remove(mask_path)
    with open(annotation_path, 'r') as f:
        data = json.load(f)
    data["annotations"] = annotations
    
    mask_path = annotation_path.with_stem(annotation_path.stem + f'_segm')
    with open(mask_path, 'w') as f:
        json.dump(data, f)

if __name__ == '__main__':
    assert(torch.__version__ == "2.5.1+cu124")
    args = parse_args()
    print(vars(args))
    main(args)